计算机科学 ›› 2019, Vol. 46 ›› Issue (7): 211-216.doi: 10.11896/j.issn.1002-137X.2019.07.032
蒋华,武尧,王鑫,王慧娇
JIANG Hua,WU Yao,WANG Xin,WANG Hui-jiao
摘要: 针对海洋Argo浮标监测数据中的异常数据挖掘问题,在改进K均值算法的基础上,提出基于距离为准则进行海洋异常数据判定的异常检测算法。该算法重新定义海洋数据邻近度,并根据数据的规模以及分布情况,区块化、自适应地筛选备选初始聚类中心;在算法迭代过程中,运用簇内,数据对象相对于聚类中心的距离均值,全局考量类簇内,符合异常特征的数据对象进行异常检测。通过仿真数据集和真实数据集分别进行实验验证,对比结果表明:该算法在聚类性能以及异常检测方面都优于对比算法。
中图分类号:
[1]LIU Z H,WU X F,XU J P,et al.Argoocean observations in China for 15 years [J].Progressin Geoscience,2016,31(5):445-460.(in Chinese) 刘增宏,吴晓芬,许建平,等.中国Argo海洋观测十五年[J].地球科学进展,2016,31(5):445-460. [2]DING J,WANG L,SHEN D,et al.An Anomaly Detection System on Big Data[J].Natural Science Journal of Hainan University,2015,33(1):24-27. [3]WANG H Z,ZHANG R,WANG G H,et al.Quality Control Technology of temperature and Salt profile observation data of Argo buoy [J].Journal of Geophysics,2012,55(2):577-588.(in Chinese) 王辉赞,张韧,王桂华,等.Argo浮标温盐剖面观测资料的质量控制技术[J].地球物理学报,2012,55(2):577-588. [4]SHAOLEI L U,HONG L I,LIU Z.Improvement of Argo salini- ty data delayed-mode quality control Method[J].Journal of Pla University of Science&Technology,2014,15(6):598-606. [5]TZORTZIS G,LIKAS A,TZORTZIS G.The MinMaxk-Means clustering algorithm[J].Pattern Recognition,2014,47(7):2505-2516. [6]CHEN G P,WANG W P,HUANG J,et al.Improved initial clustering center selection method for k-means algorithm [ J ].Journal of Chinese Computer Systems,2012,33(6):1320-1323. [7]XING C Z,GU H.K-means algorithm for optimizing initial clustering centers based on average density [J].Computer Enginee-ring and Application,2014,50(20):135-138.(in Chinese) 邢长征,谷浩.基于平均密度优化初始聚类中心的k-means算法[J].计算机工程与应用,2014,50(20):135-138. [8]CELEBI M E,KINGRAVI H A,VELA P A.A Comparative Study of Efficient Initialization Methods for the K-Means Clustering Algorithm[J].Expert Systems with Applications,2013,40(1):200-210. [9]HAN Z J.Adaptive K-means initialization method based on data denseness [J].Computer Applications and Software,2014,31(2):182-187.(in Chinese) 韩最蛟.基于数据密集性的自适应K均值初始化方法[J].计算机应用与软件,2014,31(2):182-187. [10]ZUO J,CHEN Z M.Anomaly detection algorithm based on improved K-means clustering [J].Computer Science,2016,43(8):258-261.(in Chinese) 左进,陈泽茂.基于改进K均值聚类的异常检测算法[J].计算机科学,2016,43(8):258-261. [11]CHEN G P,WANG W P,HUANG J.An improved K-means algorithm for initial clustering Center selection [J].Minicomputer System,2012,33(6):170-173.(in Chinese) 陈光平,王文鹏,黄俊.一种改进初始聚类中心选择的K-means算法[J].小型微型计算机系统,2012,33(6):170-173. [12]HAN C,YUAN Y S,MEI T,et al.Outlier Detection algorithm based on K-means [J].Computer Engineering and Application,2017,53(3):58-63.(in Chinese) 韩崇,袁颖珊,梅焘,等.基于K-means的数据流离群点检测算法[J].计算机工程与应用,2017,53(3):58-63. [13]SAMRIN R,VASUMATHI D.Hybrid Weighted K-Means Clustering and Artificial Neural Network for an Anomaly-Based Network Intrusion Detection System[J].Journal of Intelligent Systems,2016,27(2):135-147. [14]SHEN G.Improved k-means initialization method based on data density[J].Computer Engineering & Applications,2014,51(11):139-144. [15]TZORTZIS G,LIKAS A,TZORTZIS G.The MinMax k-Meansclustering algorithm[J].Pattern Recognition,2014,47(7):2505-2516. |
[1] | 徐天慧, 郭强, 张彩明. 基于全变分比分隔距离的时序数据异常检测 Time Series Data Anomaly Detection Based on Total Variation Ratio Separation Distance 计算机科学, 2022, 49(9): 101-110. https://doi.org/10.11896/jsjkx.210600174 |
[2] | 李其烨, 邢红杰. 基于最大相关熵的KPCA异常检测方法 KPCA Based Novelty Detection Method Using Maximum Correntropy Criterion 计算机科学, 2022, 49(8): 267-272. https://doi.org/10.11896/jsjkx.210700175 |
[3] | 王馨彤, 王璇, 孙知信. 基于多尺度记忆残差网络的网络流量异常检测模型 Network Traffic Anomaly Detection Method Based on Multi-scale Memory Residual Network 计算机科学, 2022, 49(8): 314-322. https://doi.org/10.11896/jsjkx.220200011 |
[4] | 杜航原, 李铎, 王文剑. 一种面向电商网络的异常用户检测方法 Method for Abnormal Users Detection Oriented to E-commerce Network 计算机科学, 2022, 49(7): 170-178. https://doi.org/10.11896/jsjkx.210600092 |
[5] | 武玉坤, 李伟, 倪敏雅, 许志骋. 单类支持向量机融合深度自编码器的异常检测模型 Anomaly Detection Model Based on One-class Support Vector Machine Fused Deep Auto-encoder 计算机科学, 2022, 49(3): 144-151. https://doi.org/10.11896/jsjkx.210100142 |
[6] | 冷佳旭, 谭明圮, 胡波, 高新波. 基于隐式视角转换的视频异常检测 Video Anomaly Detection Based on Implicit View Transformation 计算机科学, 2022, 49(2): 142-148. https://doi.org/10.11896/jsjkx.210900266 |
[7] | 刘意, 毛莺池, 程杨堃, 高建, 王龙宝. 基于邻域一致性的异常检测序列集成方法 Locality and Consistency Based Sequential Ensemble Method for Outlier Detection 计算机科学, 2022, 49(1): 146-152. https://doi.org/10.11896/jsjkx.201000156 |
[8] | 张叶, 李志华, 王长杰. 基于核密度估计的轻量级物联网异常流量检测方法 Kernel Density Estimation-based Lightweight IoT Anomaly Traffic Detection Method 计算机科学, 2021, 48(9): 337-344. https://doi.org/10.11896/jsjkx.200600108 |
[9] | 郭奕杉, 刘漫丹. 基于时空轨迹数据的异常检测 Anomaly Detection Based on Spatial-temporal Trajectory Data 计算机科学, 2021, 48(6A): 213-219. https://doi.org/10.11896/jsjkx.201100193 |
[10] | 邢红杰, 郝忠. 基于全局和局部判别对抗自编码器的异常检测方法 Novelty Detection Method Based on Global and Local Discriminative Adversarial Autoencoder 计算机科学, 2021, 48(6): 202-209. https://doi.org/10.11896/jsjkx.200400083 |
[11] | 管文华, 林春雨, 杨尚蓉, 刘美琴, 赵耀. 基于人体关节点的低头异常行人检测 Detection of Head-bowing Abnormal Pedestrians Based on Human Joint Points 计算机科学, 2021, 48(5): 163-169. https://doi.org/10.11896/jsjkx.200800214 |
[12] | 刘立成, 徐一凡, 谢贵才, 段磊. 面向NoSQL数据库的JSON文档异常检测与语义消歧模型 Outlier Detection and Semantic Disambiguation of JSON Document for NoSQL Database 计算机科学, 2021, 48(2): 93-99. https://doi.org/10.11896/jsjkx.200900039 |
[13] | 邹承明, 陈德. 高维大数据分析的无监督异常检测方法 Unsupervised Anomaly Detection Method for High-dimensional Big Data Analysis 计算机科学, 2021, 48(2): 121-127. https://doi.org/10.11896/jsjkx.191100141 |
[14] | 石琳姗, 马创, 杨云, 靳敏. 基于SSC-BP神经网络的异常检测算法 Anomaly Detection Algorithm Based on SSC-BP Neural Network 计算机科学, 2021, 48(12): 357-363. https://doi.org/10.11896/jsjkx.201000086 |
[15] | 杨月麟, 毕宗泽. 基于深度学习的网络流量异常检测 Network Anomaly Detection Based on Deep Learning 计算机科学, 2021, 48(11A): 540-546. https://doi.org/10.11896/jsjkx.201200077 |
|