সমললৈ যাওক

লম্ব

অসমীয়া ৱিকিপিডিয়াৰ পৰা
AB খণ্ডটো CD খণ্ডৰ লগত লম্ব কাৰণ ই সৃষ্টি কৰা দুটা কোণ (কমলা আৰু নীলা ৰঙেৰে চিহ্নিত কৰা) প্ৰতিটোৰে মাপ ৯০ ডিগ্ৰী। AB খণ্ডটোক বিশেষ্য হিচাপে "লম্ব" বুলি ব্যৱহাৰ কৰি A ৰ পৰা CD খণ্ডলৈ লম্ব বুলি ক'ব পাৰি, অৰ্থাৎ । B বিন্দুটোক A ৰ পৰা CD খণ্ডলৈ লম্বৰ ভূমি বিন্দু বা সৰলভাৱে CD ৰ A ৰ ভূমি বুলি কোৱা হয়।[1]

লম্ব (ইংৰাজী: perpendicular) হৈছে ৯০° কোণ কৰি পৰস্পৰক ছেদ্ কৰা দুটা ৰেখা।[2] অৰ্থাৎ প্ৰাথমিক জ্যামিতিত দুটা জ্যামিতিক বস্তু যদি সমকোণত (৯০ ডিগ্ৰী বা π/২ ৰেডিয়ান) ছেদ কৰে তেন্তে লম্ব হয়। লম্বতাৰ অৱস্থাটো লম্ব চিহ্ন, ⟂ ব্যৱহাৰ কৰি চিত্ৰাংকিতভাৱে দেখুৱাব পাৰি। ইয়াক দুটা ৰেখাৰ মাজত (বা দুটা ৰেখা খণ্ডৰ মাজত), এটা ৰেখা আৰু এখন সমতল বা দুখন সমতলৰ মাজত সংজ্ঞায়িত কৰিব পাৰি।

লম্বতা হৈছে অৰ্থোগনেলিটিৰ সাধাৰণ গাণিতিক ধাৰণাটোৰ এটা বিশেষ উদাহৰণ; লম্বতা হৈছে ধ্ৰুপদী জ্যামিতিক বস্তুৰ অৰ্থোগনেলিটি। এইদৰে উচ্চ গণিতত "লম্ব" শব্দটো কেতিয়াবা বহুত বেছি জটিল জ্যামিতিক অৰ্থোগনেলিটিৰ অৱস্থা বৰ্ণনা কৰিবলৈ ব্যৱহাৰ কৰা হয়, যেনে পৃষ্ঠ আৰু ইয়াৰ অভিলম্ব ভেক্টৰৰ মাজৰ অৱস্থা।

এটা ৰেখা আন এটা ৰেখাৰ সৈতে লম্ব বুলি কোৱা হয় যদিহে দুয়োটা ৰেখাই সমকোণত ছেদ কৰে। স্পষ্টভাৱে ক’বলৈ গ’লে, প্ৰথম ৰেখা এটা দ্বিতীয় ৰেখাৰ লগত লম্ব যদি (১) ৰেখা দুটা লগ হয়; আৰু (২) ছেদ বিন্দুত প্ৰথম ৰেখাৰ এটা ফালে থকা সৰল কোণটোক দ্বিতীয় ৰেখাই দুটা সমন্বিত কোণত কাটি দিয়ে। লম্বতাক প্ৰতিসম বুলি দেখুৱাব পাৰি, অৰ্থাৎ যদি প্ৰথম ৰেখা এটা দ্বিতীয় ৰেখাৰ লগত লম্ব হয়, তেন্তে দ্বিতীয় ৰেখাও প্ৰথম ৰেখাৰ লগত লম্ব হয়। সেয়েহে আমি দুটা ৰেখাক কোনো ক্ৰম নিৰ্দিষ্ট নকৰাকৈয়ে লম্ব (ইটোৱে সিটোৰ লগত) বুলি ক’ব পাৰো।

লম্বতা সহজেই খণ্ড আৰু ৰশ্মিলৈকে বিস্তৃত হয়। উদাহৰণস্বৰূপ, এটা ৰেখা খণ্ড এটা ৰেখা খণ্ড ৰ সৈতে লম্ব যদি, যেতিয়া প্ৰত্যেককে দুয়োফালে প্ৰসাৰিত কৰি এটা অসীম ৰেখা গঠন কৰা হয়, তেতিয়া এই দুটা ফলস্বৰূপ ৰেখা ওপৰৰ অৰ্থত লম্ব হয়। চিহ্নসমূহত, ৰ অৰ্থ হৈছে ৰেখা খণ্ড AB ৰেখা খণ্ড CD ৰ সৈতে লম্ব। [3]

ৰেখা এটাক সমতলৰ লগত লম্ব বুলি কোৱা হয় যদিহে ই ছেদ কৰা সমতলৰ প্ৰতিটো ৰেখাৰ লগত লম্ব হয়। এই সংজ্ঞা ৰেখাৰ মাজত লম্বতাৰ সংজ্ঞাৰ ওপৰত নিৰ্ভৰ কৰে।

মহাকাশত দুটা সমতল লম্ব বুলি কোৱা হয় যদিহে ইহঁতৰ ডাইহেড্ৰল কোণটো সমকোণ হয়।

তথ্যসূত্ৰ

[সম্পাদনা কৰক]
  1. Kay (1969, পৃষ্ঠা 114)
  2. Kay (1969, পৃষ্ঠা 91)
  3. Kay (1969, পৃষ্ঠা 91)
  • Altshiller-Court, Nathan (1925), College Geometry: An Introduction to the Modern Geometry of the Triangle and the Circle (2nd সম্পাদনা), প্ৰকাশক New York: Barnes & Noble 
  • Kay, David C. (1969), College Geometry, প্ৰকাশক New York: Holt, Rinehart and Winston 
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy