Přeskočit na obsah

Extrémně velký dalekohled

Z Wikipedie, otevřené encyklopedie
Extrémně velký dalekohled
Umělecká představa Extrémně velkého dalekohledu
Umělecká představa Extrémně velkého dalekohledu
OrganizaceEvropská jižní observatoř
ObservatořEvropská jižní observatoř
OblastCerro Armazones
StátChile
Souřadnice
Nadmořská výška3 046 m n. m.
Průměr39,3 m
Webová stránkahttps://elt.eso.org/
CommonsExtremely Large Telescope
Map
Některá data mohou pocházet z datové položky.

Extrémně velký dalekohled (anglicky Extremely Large TelescopeELT, dříve Evropský extrémně velký dalekohled[1][pozn. 1]) je připravovaný největší dalekohled na světě. Na hoře Cerro Armazones v severní Chile jej staví Evropská jižní observatoř (ESO). Jeho základní kámen byl položen v květnu 2017; s uvedením do provozu se počítá po roce 2028.[2]

Dalekohled má mít průměr hlavního zrcadla 39,3 m (dosud největší jednotlivý dalekohled na světě Gran Telescopio Canarias má zrcadlo velké 10,4 m). Bude složeno z 798 šestiúhelníkovitých segmentů o průměru 1,4 m. Systém bude vybaven aktivní optikou, která bude korigovat obraz při náklonu zrcadla nebo při změně teploty, a adaptivní optikou, která bude reagovat na chvění zemské atmosféry. Kupole, v které bude dalekohled umístěn, bude mít průměr 86 m a výšku 74 m.

Přístroj bude určen k pozorování v oblastech od viditelného světla po střední infračervené vlnové délky. Vzhledem k tomu, že půjde o výrazně větší dalekohled než dosavadní, očekávají se od něj objevy ve většině odvětví astronomie, především v hledání exoplanet a protoplanetárních systémů, v zkoumání povahy a rozložení temné hmoty a temné energie nebo objevy týkající se formování a evoluce největších struktur vesmíru.

Schéma optické konfigurace dalekohledu se zrcadly M1 až M5. F – Nasmythovo ohnisko.

Systém bude určen k pozorování v oblastech od viditelného světla po střední infračervené vlnové délky.[3] Plánovaná životnost zařízení je nejméně 30 let.[4]

Dalekohled bude ovládán z řídící místnosti z vedlejší observatoře Paranal, kde bude působit také vědecký personál.[5] Obě observatoře budou propojeny optickými kabely. Na observatoři Cerro Amazones bude především technický personál dalekohledu, zařízení pro pokovování zrcadel, místní dílny, ostraha apod.

Zrcadla dalekohledu

[editovat | editovat zdroj]

Dalekohled bude využívat novou optickou koncepci s celkem pěti zrcadly.[3] Tento počet zrcadel (současné velké dalekohledy mají obvykle tři zrcadla) byl zvolen především kvůli zkrácení celkové délky dalekohledu.

  • Primární zrcadlo bude složeno z 798 šestiúhelníkovitých segmentů o průměru 1,4 m a tloušťce 5 cm, které dohromady představují odraznou plochu o celkové velikosti 978 m². Vnější průměr soustavy bude 39,3 m, uvnitř bude prostor bez zrcadel o průměru 10,4 m. Systém bude vybaven aktivní optikou, která bude korigovat tvar zrcadla při náklonu nebo při změně teploty.
    Zrcadla budou vyrobena ze Zeroduru, sklokeramického materiálu s velmi nízkou tepelnou roztažností, který zaručuje zachování tvaru zrcadla i při větších změnách teploty.[6] Povrch zrcadla bude vybroušen s přesností 15 nm a pokoven vrstvou stříbra nebo hliníku.
    Kromě 798 segmentů zrcadla, které budou umístěny v dalekohledu, bude vyrobeno ještě 133 záložních, které budou použity především k náhradě těch segmentů hlavního zrcadla, u kterých se zhorší odrazivost. U vyměněných prvků se odstraní kovová vrstva a opět se nanese nová. Počítá se s tím, že toto pokovování bude probíhat v servisním středisku na úpatí hory Cerro Armazones, na které bude dalekohled umístěn.
  • Sekundární zrcadlo bude monolitické o průměru 4,2 m.[7] S tímto průměrem půjde o největší sekundární zrcadlo v dalekohledu a také o největší konvexní zrcadlo, jaké kdy bylo vyrobeno.[8] Je vyrobeno také ze Zeroduru.
  • Třetí zrcadlo, umístěné ve volném prostoru uprostřed primárního zrcadla, bude mít průměr 3,8 m.
  • Čtvrté zrcadlo bude umístěno také v optické ose dalekohledu, bude rovinné a bude vybaveno systémem adaptivní optiky, která má odstraňovat zhoršení kvality a rozmazání obrazu hvězd způsobené chvěním vzduchu. Jeho účelem bude odrážet obraz mimo hlavní osu dalekohledu na páté zrcadlo.
  • Páté zrcadlo přivede obraz mimo vlastní dalekohled k měřícím přístrojům, které budou umístěny po stranách hlavního zrcadla v tzv. Nasmythově ohnisku.

Pro systém adaptivní optiky bude mít dalekohled k dispozici šest laserů, které budou ve výšce asi 90 km vytvářet umělé sodíkové hvězdy, podle jejichž obrazu bude korigován tvar čtvrtého zrcadla.[9] Půjde o lasery produkující žluté světlo o vlnové délce 589 nm. Pro funkci dalekohledu jsou nutné čtyři z nich, další dva jsou potřebné pro některé vědecké přístroje.

Konstrukce

[editovat | editovat zdroj]

Hlavní nosná konstrukce dalekohledu by měla vážit asi 2 800 tun.[10] Kupole dalekohledu bude mít průměr 86 m a výšku 74 m.[11] Bude polokulovitá s dvěma zakřivenými, bočně otevíranými dveřmi. Je navržena tak, aby byl dalekohled schopen pozorovat objekty od výšky 20° nad horizontem až k zenitu. Celá stavba zabírá plochu odpovídající fotbalovému hřišti.[12]

Při návrhu konstrukce přístroje byla věnována pozornost i ochraně přístroje proti zemětřesení.[13] Místo stavby leží – podobně jako většina území Chile – nedaleko místa styku dvou tektonických desek: Jihoamerické desky a desky Nazca. Proto jsou zde zemětřesení častá.

Přístroje

[editovat | editovat zdroj]
Kamera MICADO
Spektrograf HARMONI

V ohniscích dalekohledu bude k dispozici několik přístrojů k zaznamenávání obrazu nebo k měření vlastních vědeckých dat.

  • MICADO – Multi-AO Imaging Camera for Deep Observations: kamera pro blízkou infračervenou oblast (vlnové délky 0,8–2,4 µm). Bude jedním z prvních přístrojů, které budou připraveny při uvedení dalekohledu do provozu.[14] Tuto dvoupatrovou kameru připravuje mezinárodní sdružení sedmi institucí pod vedením německého Max-Planck-Institut für extraterrestrische Physik.[15] Bude umístěna v kryostatu (izolované nádobě chlazené na extrémně nízkou teplotu). Měla by se využít hlavně zobrazování zobrazování detailní struktury galaxií s vysokým rudým posuvem, studiu jednotlivých hvězd v blízkých galaxiích nebo pro zkoumání prostředí s extrémně velkými gravitačními sílami, například blízko supermasivní černé díry uprostřed naší Galaxie.
  • HARMONI – High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph: víceúčelový spektrograf pro viditelné a blízké infračervené záření (0,47–2,45 µm).[16] Tento přístroj by měl být zvlášť vhodný pro pozorování galaxií v raném vesmíru nebo pro detailní snímky exoplanet.
  • METIS – Mid-infrared ELT Imager and Spectrograph: kamera a spektrograf pro střední infračervenou oblast (3–20 μm).[17] Bude použit k zkoumání exoplanet, protoplanetárních disků, těles ve sluneční soustavě, aktivních jader galaxií a infračervených galaxií s extrémním rudým posunem.
  • MAORY – Multi-conjugate Adaptive Optics RelaY for the ELT: modul adaptivní optiky pracující v oblasti vlnových délek 0,8–2,4 μm určený v prvních letech pozorování především pro spolupráci s kamerou MICADO.[18] K vytvoření referenčních hvězd bude využívat šesti sodíkových laserů.

Další přístroje – např. spektrograf s vysokým rozlišením HIRES nebo víceobjektový spektrograf MOSAIC – se v roce 2017 nacházely v prvních etapách přípravy (Phase A).

Porovnání

[editovat | editovat zdroj]

ELT soustředí 100milionkrát více světla než lidské oko, 8milionkrát více než Galileův dalekohled a 26krát více než jeden dalekohled VLT na observatoři Paranal. Získá také více světla než všechny existující 8 až 10 metrové dalekohledy na světě dohromady.[19]

Cíle pozorování

[editovat | editovat zdroj]
Porovnání snímků z Hubbelova kosmického dalekohledu (vlevo), dalekohledů VLT s modulem adaptivní optiky (uprostřed) s předpokládaným zobrazením pomocí Extrémně velkého dalekohledu (vpravo)

Vzhledem k velikosti dalekohledu se od něj očekávají objevy ve většině odvětví astronomie. Primární by mělo být[20]

Podle představ z roku 2015 by – i vzhledem k blízké geografické vzdálenosti – měla být výzkumná činnost dalekohledu ELT koordinována s dalekohledy ESO na Observatoři Paranal, především s VLT/VLTI a VISTA.[22]

Porovnání velikosti primárního zrcadla ELT (zelené vpravo) s dalšími existujícími i plánovanými dalekohledy

Porovnání ELT s dalšími největšími dalekohledy

[editovat | editovat zdroj]
Jméno Průměr zrcadla (m) Plocha zrcadla (m²) První světlo
ELT 39,3 978 2028
Třicetimetrový dalekohled (TMT) 30 655 ?
Velký Magellanův dalekohled (GMT) 24,5 368 „konec 20. let“
Jihoafrický velký dalekohled (SALT) 11,1 × 9,8 79 2005
Gran Telescopio Canarias (GTC) 10,4 74 2007
Keckovy dalekohledy 10,0 76 1990, 1996
Very Large Telescope (VLT) 8,2   1998–2000
Dokončení hrubých zemních prací na hoře Cerro Amazones v roce 2015
V roce 2018 byla zahájena stavba základů: rýsuje se tvar základů kopule
V roce 2023 dosáhla konstrukce kopule konečné výšky

Dalekohled vyvíjí od roku 2005 Evropská jižní observatoř.[20] Stalo se tak na základě rozhodnutí rady této organizace, aby „zachovala vůdčí roli evropské astronomie v období mimořádně velkých dalekohledů“.[23] Pro přístroj bylo hledáno několik míst:[24][25]

Uvažováno bylo i několik další míst, např. v Antarktidě na vrcholu „Dome C“ (3223 m n. m.).

Na jednotlivých místech byly sledovány meteorologické podmínky: zejména síla a směr větru, relativní vlhkost vzduchu a množství aerosolů v ovzduší. Dále byla zkoumána turbulence atmosféry, jas oblohy, seismická pevnost podloží nebo např. to, v jaké míře se zde vyskytují kondenzační stopy po tryskových letadlech. Týmy, které zkoumaly vhodná místa, si vzájemně sdílely informace se skupinou, která hledala umístění pro Třicetimetrový dalekohled.

Hlavní kroky projektu

[editovat | editovat zdroj]
  • V roce 2005 byla vypracována první studie na dalekohled o průměru zrcadla 100 m – Overwhelmingly Large Telescope (OWL). Po mezinárodním posouzení se tento koncept ukázal jako technicky nereálný. V další studii bylo proto zrcadlo zmenšeno na 42 m.[26]
    • Projekt OWL nebyl zcela opuštěn a objevily se úvahy o výstavbě dalekohledu ESO o průměru 60–100 m po roce 2050.[27]
  • V listopadu 2006 byl tento návrh podroben detailním diskusím na konferenci v Marseille za účasti více než 250 evropských astronomů.[23]
  • V roce 2010 byl vybrán vrchol hory Cerro Armazones v severní Chile v nadmořské výšce 3060 m. Pro lokalitu rozhodly především velmi dobré pozorovací podmínky a také blízkost jiné už existující Observatoře Paranal, od které je vzdálena 20 km východně. Chilská vláda pro observatoř darovala 189 km² půdy.[24]
  • V roce 2011 ESO rozhodla o tom, že se odebere jedna vnější řada šestiúhelníkovitých segmentů hlavního zrcadla a tím se zmenší hlavní zrcadlo na 39,3 m.[21] To snížilo náklady na projekt z 1,275 miliard euro na 1,055 miliard.[28] Dosáhlo se toho nejen snížením počtu segmentů, ale i zmenšením velikosti sekundárního zrcadla z 5,9 na 4,2 m, což umožnilo použít lehčí a levnější konstrukci, která jej bude držet.
  • V roce 2011 také podepsala Česká republika dohodu o svém finančním podílu na výstavbě.[29] V té době se počítalo s uvedením dalekohledu do provozu roku 2020.[30] Plány z roku 2016 posunuly tento termín na rok 20242025, přerušení výstavby způsobené epidemií covidu-19 pak na rok 2027.[21]
Polotovar prvního segmentu hlavního zrcadla (leden 2018)
  • V roce 2014 schválila rada ESO vlastní výstavbu dalekohledu. K tomuto datu měla zajištěno 90 % potřebných zdrojů.[31] Současně bylo rozhodnuto, že některé části projektu se přesunou do další části, tzv. fáze 2.[32] Jde především o:[33]
    • 210 z celkových 798 segmentů zrcadla (půjde o pět nejvnitřnějších řad),
    • 133 segmentů, které budou připravovány jako náhradní,
    • dva z šesti laserů pro modul adaptivní optiky.
  • V roce 2015 byly dokončeny hrubé zemní práce na plošině pro dalekohled na vrcholu hory Cerro Armazones.
  • V únoru 2016 podepsala ESO smlouvu se sdružením „ACe Consorcium“ na výstavbu kopule a nosné konstrukce dalekohledu.[34] S částkou 400 milionů euro jde o největší kontrakt v dějinách pozemní astronomie.
  • V květnu 2017 byl slavnostně položen základní kámen dalekohledu.[12] Byl také podepsán kontrakt na výrobu hlavního zrcadla[35] a v Německu bylo odlito sekundární zrcadlo dalekohledu.[8] a začala stavba základů pro budovu dalekohledu.
  • V lednu 2018 byly odlity první segmenty primárního zrcadla.[6] V prosinci bylo oznámeno posunutí termínu pro uvedení do zkušebního provozu (tzv. první světlo) z roku 2024 na 2025.[36]
Zrcadlo M2 před leštěním (rok 2019)
  • V polovině roku 2020 byla z důvodů pandemie covidu-19 přerušena výstavba základů budovy dalekohledu.[37]
  • V červnu 2021 obnovilo italské konsorcium ACe práce na kupoli a dalších hlavních strukturách dalekohledu.[37] Zároveň se posunul termín pro uvedení do zkušebního provozu na září 2027.
  • V červnu 2023 ohlásilo ESO, že stavba dalekohledu je ve své polovině.[38] Zrcadla M2 a M3 byla tou dobou odlita a leštila se a deformovatelné zrcadlo M4 bylo integrováno do nosné konstrukce. Šest laserů, které jsou základní součástí adaptivní optiky dalekohledu, bylo vyrobeno a předáno ESO ke zkouškám. Se zahájením pozorování se počítá v roce 2028.
  • V říjnu 2023 byla do základů budovy vložena časová schránka s dokumenty pro budoucí generace. Obsahovala např. skleněnou plaketu od bývalé prezidentky Chile Michelle Bachelet Jeriaové, protokolární pero chilské vlády, kresby chilských dětí (krajiny severní Chile, astronomické objekty a dalekohledy ESO) nebo koláže fotografií zaměstnanců ESO.[39]
  • V lednu 2024 dorazilo na Observatoř Paranal prvních 18 segmentů hlavního zrcadla.[40] V červnu téhož roku byl pak v německé firmě Schott vyroben poslední z 949 segmentů.[41]
Porovnání dalekohledu ELT s vysílačem na Ještědu
Porovnání dalekohledu ELT s vysílačem na Ještědu
  1. Projekt se původně označoval jako Evropský extrémně velký dalekohled – E-ELT. V červnu 2017 však ESO rozhodla, že se název zkrátí: jednak pro zjednodušení a také proto, že se na jeho vývoji podílejí i mimoevropské země.
  1. Renaming the E-ELT [online]. European Southern Observatory, 2017-06-12 [cit. 2017-06-18]. Dostupné online. (anglicky) 
  2. About | Timeline [online]. European Southern Observatory, 2022 [cit. 2023-02-24]. Dostupné online. (anglicky) 
  3. a b Koncepce E-ELT [online]. European Southern Observatory, 2015 [cit. 2016-02-20]. Dostupné v archivu pořízeném dne 2016-02-07. 
  4. FAQ ELT [online]. European Southern Observatory, 2017 [cit. 2018-02-02]. Kapitola For how long will the ELT be used?. Dostupné online. (anglicky) 
  5. ESO ELT Book [online]. European Southern Observatory, 2011-12-09 [cit. 2018-02-05]. Kapitola 5.3.1 Synergies with Paranal. Dále jen [ELT Book]. Dostupné online. (anglicky) 
  6. a b První segmenty primárního zrcadla dalekohledu ELT úspěšně odlity [online]. European Southern Observatory, 2018-01-09 [cit. 2018-01-09]. Dostupné v archivu pořízeném dne 2016-02-07. 
  7. E-ELT Optical Design [online]. European Southern Observatory, 2015 [cit. 2016-03-28]. Dostupné v archivu pořízeném dne 2016-02-07. (anglicky) 
  8. a b Sekundární zrcadlo pro dalekohled ELT úspěšně odlito [online]. European Southern Observatory, 2017-05-22 [cit. 2017-05-24]. Dostupné online. 
  9. ELT Book. Kapitola 3.10 Laser Guide Stars
  10. E-ELT Telescope Design [online]. European Southern Observatory [cit. 2016-12-28]. Dostupné online. (anglicky) 
  11. E-ELT Enclosure [online]. European Southern Observatory [cit. 2016-12-28]. Dostupné online. (anglicky) 
  12. a b Slavnostní položení základního kamene dalekohledu ESO/ELT [online]. European Southern Observatory, 2017-05-26 [cit. 2017-05-27]. Dostupné online. 
  13. Protecting the Extremely Large Telescope from Earthquakes [online]. European Southern Observatory, 2017-12-27 [cit. 2018-02-06]. Dostupné online. (anglicky) 
  14. MICADO [online]. European Southern Observatory, 2015 [cit. 2017-12-26]. Dostupné online. (anglicky) 
  15. MICADO [online]. Max-Planck-Institut für extraterrestrische Physik, 2016 [cit. 2017-12-26]. Dostupné online. (anglicky) 
  16. HARMONI [online]. European Southern Observatory, 2015 [cit. 2017-12-26]. Dostupné online. (anglicky) 
  17. METIS [online]. European Southern Observatory, 2015 [cit. 2017-12-26]. Dostupné online. (anglicky) 
  18. MAORY [online]. European Southern Observatory, 2016 [cit. 2017-12-26]. Dostupné online. (anglicky) 
  19. The European Extremely Large Telescope [online]. European Southern Observatory [cit. 2012-10-19]. Kapitola Did you know?. Dostupné online. (anglicky) 
  20. a b Evropská jižní observatoř [online]. Astronomický ústav AV ČR, 2009 [cit. 2012-03-10]. Kapitola E-ELT. Dostupné v archivu pořízeném dne 2012-03-13. 
  21. a b c Hyde Park Civilizace - Jan Palouš [online]. Česká televize, 2016-02-20 [cit. 2016-02-20]. Čas 45:10 od začátku stopáže. Dostupné online. 
  22. FAQ E-ELT [online]. European Southern Observatory [cit. 2012-12-05]. Kapitola How will the ELT and other facilities work together?. Dostupné online. (anglicky) 
  23. a b FAQ E-ELT [online]. European Southern Observatory [cit. 2012-12-05]. Kapitola When and how did ESO decide to build the ELT?. Dostupné online. (anglicky) 
  24. a b Hledání domova [online]. European Southern Observatory, 2015 [cit. 2018-01-30]. Dostupné v archivu pořízeném dne 2017-04-16. 
  25. VERNIN, Jean, et al. European Extremely Large Telescope Site Characterization I: Overview. Publications of the Astronomical Society of the Pacific. The Astronomical Society of the Pacific, 2011, roč. 123, čís. 909, s. 1334–1346. Dostupné v archivu pořízeném dne 2016-03-04. (anglicky) 
  26. MARTINEK, František. Největší dalekohled bude mít průměr 30 m [online]. Česká astronomická společnost, 2009-07-28 [cit. 2012-03-23]. Dostupné online. 
  27. GRYGAR, Jiří; ONDŘICH, David. Letošní pohled na vesmír vloni. Astropis. 2023, roč. 30, čís. 137, s. 10. ISSN 1211-0485. 
  28. SCHILLING, Govert. Europe Downscales Monster Telescope to Save Money. Science [online]. 2011-06-14 [cit. 2018-02-02]. Dostupné online. (anglicky) 
  29. The Czech Republic commits to the E-ELT [online]. European Southern Observatory, 2011-06-03 [cit. 2017-07-25]. Dostupné online. (anglicky) 
  30. E-ELT – The European Extremely Large Telescope. The World’s Biggest Eye on the Sky [online]. European Southern Observatory, 2011 [cit. 2012-03-10]. Kapitola Europe’s window on the Universe. Dostupné v archivu pořízeném dne 2012-07-09. (anglicky) 
  31. Construction of Extremely Large Telescope Approved [online]. SpaceRef, 2014-12-04 [cit. 2018-02-05]. Dostupné v archivu pořízeném dne 2020-08-23. (anglicky) 
  32. FAQ-ELT. Kapitola Why was the two-phase approach necessary?
  33. FAQ-ELT. Kapitola What will be moved to Phase 2?
  34. SRBA, Jiří. ESO podepsala největší kontrakt v historii pozemní astronomie — na dodávku kopule a nosné konstrukce pro dalekohled E-ELT [online]. Astro.cz, 2016 [cit. 2016-02-25]. Dostupné online. 
  35. ESO podepsala kontrakty na gigantické primární zrcadlo dalekohledu ELT [online]. European Southern Observatory, 2017-05-29 [cit. 2017-06-01]. Dostupné online. 
  36. New baseline schedule for ESO’s Extremely Large Telescope [online]. European Southern Observatory, 2018-12-20 [cit. 2018-12-22]. Dostupné online. 
  37. a b ESO’s Extremely Large Telescope planned to start scientific operations in 2027 [online]. European Southern Observatory, 2021-06-11 [cit. 2021-06-12]. Dostupné online. (anglicky) 
  38. SRBA, Jiří. Konstrukce dalekohledu ELT v polovině. www.astro.cz [online]. Česká astronomická společnost, 2023-07-25 [cit. 2023-07-26]. Dostupné online. 
  39. Time capsule buried at ESO’s Extremely Large Telescope [online]. European Southern Observatory, 2023-10-16 [cit. 2023-10-26]. Dostupné online. (anglicky) 
  40. The moment of truth [online]. European Southern Observatory, 2024-01-22 [cit. 2024-01-27]. Dostupné online. (anglicky) 
  41. Poslední segment zrcadla největšího dalekohledu na světě je připraven [online]. European Southern Observatory, 2024-06-27 [cit. 2024-06-30]. Dostupné online. (anglicky) 

Související články

[editovat | editovat zdroj]

Externí odkazy

[editovat | editovat zdroj]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy