Neprůstřelná vesta
V moderním pojetí je neprůstřelná (balistická) vesta ochranný oblek, většinou více či méně pokrývající trup a zhotovený z pevných materiálů, který je odolný proti střelám z ručních palných zbraní a chrání také proti střepinám z granátů a min. Vesty také v různé míře odolávají útoku bodnou zbraní (nožem).
Historický vývoj
[editovat | editovat zdroj]Snaha o ochranu před zbraněmi nepřátel je nejspíše stará jako lidstvo samo. Ochranné obleky a různá brnění, ať už z kůží, ze dřeva, kostí, nebo kovu, existují již řádově tisíce let. V tomto ohledu je to věčný souboj mezi průbojností střely (nebo jiné zbraně) a pevností, odolností ochranného obleku nebo brnění.
Počátky podobných vest nalezneme již v období mezi světovými válkami. V roce 1943 začala britská společnost Wilkinson Sword vyrábět pro potřeby ochrany posádek bombardovacích letadel takzvanou protiflakovou kombinézu (protistřepinová kombinéza, Flak jacket), což byl první náznak moderní neprůstřelné vesty.[1] Šlo v zásadě o pevnou bundu z více vrstev nylonu, nově objeveného polymeru, doplněnou kovovými destičkami.[2] Právě poranění posádky střepinami šrapnelů bylo nejčastější příčinou ztráty letounu, a tím i celé posádky.
Nylonové vlákno (materiál je zde znám spíše pod názvem silon) má poměrně velkou pevnost v tahu a tato kombinéza dokázala úspěšně zastavit řadu menších nebo pomalejších střepin z protiletadlových kanonů, tzv. flaků. Na zastavení střely z pistole nebo pušky však samotný nylon nestačí. Je sice poměrně pevný, ale i dosti průtažný.
Situace se změnila s příchodem kevlaru, který v polovině 70. let představila firma DuPont.[3] Kevlar je aramidové vlákno s vysokou pevností a nízkou průtažností, což jsou pro účel neprůstřelných obleků klíčové vlastnosti. Existuje více druhů, například Kevlar 29 a novější i pevnější Kevlar 129. Dalšími materiály jsou Twaron a Twaron High Tenacity, což jsou rovněž aramidová vlákna velmi podobná kevlaru.[1] Vlákna jsou zkroucena do provazců, ze kterých je tkána pevná tkanina vzhledu hrubé pytloviny. Vesty mívají vícero vrstev tohoto materiálu.
V roce 1985 bylo objeveno polyetylénové vlákno Spectra. Polyetylen známe běžně v několika podobách jako igelit nebo mikroten. Nelze si nevšimnout, že už v případě mikrotenu je pevnost fólie mnohem vyšší než u igelitu. Přetrhnout zkroucený igelitový sáček zvládne kdekdo, mikroten je mnohem odolnější. Obojí je polyethylen, ale pokaždé s jinou molekulární strukturou. Spectra je opět mnohem odolnější než mikroten. Z vláken se vytváří Spectra Shield, který je vytvořen rovnoběžně orientovanými vlákny Spectra zalitými v pružné pryskyřičné matici. Vždy dvě vrstvy s kolmo na sebe orientovanými vlákny jsou zality do slabé polyetylenové fólie a z vícero vrstev těchto fólií je vytvořen finální výrobek.
Uvádí se, že Spectra Shield je výrazně odolnější na opakované a šikmé zásahy, a také proti vysokorychlostním střelám (například z pušky M16).[1]
Princip fungování
[editovat | editovat zdroj]Vtip odolností je ve vysoké pevnosti vláken v tahu. Většina běžných střel se při zásahu deformuje a rotuje, čímž na sebe zachytává vlákna a snaží se je při postupu natáhnout, čemuž brání extrémní pevnost těchto vláken. Pro snazší deformaci bývají u některých vest vloženy na povrch ještě pláty z oceli, titanu, keramiky (karbidy kovů), případně kombinace těchto materiálů. Při dopadu projektilu dojde k jejímu zploštění. Účelem je dosáhnout deformace střely ještě před vstupem do vrstvy kevlarových vláken a rozložit kinetickou energii na větší plochu.[1]
Konstrukce samotné vesty
[editovat | editovat zdroj]Většina materiálů má sníženou odolnost, pokud je namočena, protože voda působí jako mazivo pro projektily a navíc jako změkčovadlo polyamidů (kevlar) – snižuje pevnost a zvyšuje tažnost. Proto se vesty vyrábějí s vrstvami neprůstřelného materiálu s vodoodpudivou úpravou. Vesty se dále vybavují tzv. protišokovými vložkami. Je to vrstva nejblíže tělu a absorbuje kinetickou energii a rozloží ji na větší plochu povrchu těla. I na to je pamatováno v příslušných normách. Při zásahu do vesty bez protišokových vložek dojde k prohnutí tkaniny v místě dopadu střely. Toto prohnutí není nijak výrazné, např. 1 cm. Ale rychlost, jakou k němu dojde, způsobí u většiny střel ráže 9 mm luger popraskání žeber, výjimečně i frakturu (zlomeninu). Po zásahu do vesty je oběť vyřazena, i když neumírá. Pokud ale dojde k zásahu ze silnější ráže (např. 40 SaW), je průtlak větší a často způsobuje i smrtelná vnitřní zranění. Představa hrdiny, který dostane 30 zásahů do vesty a ani nemrkne, je tedy zcela mylná. V těchto případech velice záleží na rychlosti a hlavně hmotnosti střely. Ta určuje její setrvačnost. Protišoková vložka rozloží energii střely na mnohem větší plochu. Tlak potom nestačí na poškození žeber, potažmo vnitřních orgánů.
Budoucnost
[editovat | editovat zdroj]Materiálem budoucnosti jsou výrobky původem z přírody.[zdroj?!] Vlákna pavoučích sítí jsou pevnější nežli kterákoliv vyrobená lidmi a chitin, který tvoří exoskeleton hmyzu, je rovněž nesmírně pevným materiálem. Tyto materiály jsou ale zatím ve stadiu pokusů.
Průbojné střely schopné prostřelit neprůstřelné vesty
[editovat | editovat zdroj]Existují moderní průbojné střely, které jsou zhotoveny z pevných a těžkých materiálů – nejlevnější eventualitou je střela s ocelovým jádrem. Může být i podkaliberní, tedy například v plastovém projektilu je vložena tyčinka z oceli, nebo ještě těžšího a tvrdšího wolframu. Povrchová úprava střel nemá úpravu teflonem, navzdory populární představě, žádnou spojitost s její účinností proti balistické ochraně, teflonem se potahují olověné střely, aby nedocházelo ke stírání olova v hlavni a tím k přílišnému znečištění zbraně. Příkladem je munice české provenience „Snail“, která pronikne jakoukoliv běžnou neprůstřelnou vestou i s keramickými vložkami. Přesné detaily nejsou u výrobce pochopitelně uvedeny, ale podle dostupných fotografií se může jednat o tento typ munice. Na velmi podobném principu je založena i moderní protitanková podkaliberní munice, kde jsou střely zhotoveny z pevného a těžkého ochuzeného uranu – OU (též anglicky DU – depleted uranium), a rovněž střelivo do takzvaných „protimateriálových“ ostřelovacích pušek, jako je český „Falcon“ nebo některá z pušek „Gepard“ maďarské výroby a jiné. Vzhledem k tomu, že tyto zbraně jsou určeny na ničení lehce pancéřovaných cílů, mají použitelný dostřel kolem 2000 m a průbojnost 1–2 cm oceli až na několik set metrů, nelze se divit, že jim žádná neprůstřelná vesta neodolá.
Neprůstřelné vesty uvedeného typu lze (pokud nejsou vybaveny dodatečnými pláty z keramiky a podobně) také poměrně snadno prostřelit kuší nebo lukem, případně probodnout nožem. Ostré předměty, které navíc nerotují, na sebe nenabalují vlákna, ale odsouvají je do stran nebo řežou, těmito vestami proniknou. Existují i vesty odolné proti takovým projektilům, většinou založené na vložené síťce z pevných kovových drátů, například z titanu.
Klasifikace
[editovat | editovat zdroj]Výrobky – vesty se klasifikují podle své odolnosti. Vysvětlivky zkratek (viz Projektil: FMJ – Full Metal Jacket, SC – Soft Core (měkké jádro), AP – Armour Piercing (průbojný), HC – Hard Core (tvrdé jádro)
Americká klasifikace
[editovat | editovat zdroj]NIJ STD 0101.03 rozlišuje čtyři třídy I (nejlehčí) až IV (měla by zastavit střelu z pušky). Nejvíce používaná třída III zastaví střelu .357 Magnum či .45 ACP. (v současnosti největší a proti člověku nejúčinnější běžně používaná sériově vyráběné pistolové ráže – .45 ACP je ráže asi 11 mm). Z praxe: kde neprojde 9 mm Luger, tam nemá 45 ACP šanci. Co to udělá na těle, je věc druhá.
TŘÍDA ODOLNOSTI | I | II | III | IV |
MUNICE, KALIBR / TYP STŘELY | 9 mm Luger | 7,62 × 25 mm Tokarev FMJHC
.357 Magnum KTW Ms7 |
7,62 × 51 mm FMJ SC
5,56 × 45 mm FMJ SC |
7,62 × 51 mm FMJ AP |
Střela hmotnost (g) | 8 | 5,8
7,52 |
9,45
3,56 |
9,8
4,5 |
Rychlost střely (m/s) | 400 – 420 | 480 – 490
540 – 580 |
850 – 900
980 – 1030 |
850 – 900
920 – 980 |
Německá norma AK II
[editovat | editovat zdroj]TŘÍDA ODOLNOSTI | I | IIA | II | IIII |
MUNICE, KALIBR / TYP STŘELY | .22 Cal. 40GR.LR .25 Cal. Auto 50 GR.Lead |
.22 Mag. 40 GR. Solid point 12 Gauge "00" Buchshot |
.41 Mag. 210 Gr. JSP .44 Mag. 240 Gr. SJSP |
.44 Mag. 240 Gr. SWC 9mm 124 Gr. FMJ |
Rychlost střely (m/s) | 320 247 |
360 - |
397 360 |
427 427 |
Euro norma CEN
[editovat | editovat zdroj]Existuje také norma na úrovní EU.
V České republice platí norma ČSN 39 5360
[editovat | editovat zdroj]Ta je obecně považována za nejpřísnější.
Úroveň 1 | .38 Special Poloplášťová Soft Point Federal 38J | 8,1g | 300m/s+10m/s |
Úroveň 2 | 9mm Celokovový plášť DM 11A1B2 Dynamit Nobel nebo MEN | 8,0 g | 360m/s+10m/s |
.357" Magnum Soft Point Flat Nose Norma 19107 | 10,2 g | 385m/s+10m/s | |
Úroveň 3 | 9mm FMJ DM 11A1B2 Dynamit Nobel nebo MEN | 8,0 g | 415m/s+10m/s |
.44" Magnum Soft Point Flat Nose (plochý nos) Speer 4660 nebo 4661 | 15,5 g | 430m/s+10m/s | |
Úroveň 4 | .357" FMJ Coned Bullet Lead Core (olověné jádro) Dynamit Nobel nebo MEN | 10,2 g | 430m/s+10m/s |
Úroveň 5 | 5,56x45mm M 193 Ball FN nebo SS 92 Ball | 3,6 g | 970m/s+10m/s |
7,62x51mm NATO SS 77 FMJ Lead Core FN | 9,3 g | 830m/s+10m/s | |
Úroveň 6 | 7,62mmx51 NATO Armour Piercing – Dynamit Nobel FMJ Hard Core (tvrdé jádro) | 9,55 g | 820m/s+10m/s |
Reference
[editovat | editovat zdroj]- ↑ a b c d www.valka.cz
- ↑ Stephan, Restle (1997). Ballistische Schutzwesten und Stichschutzoptionen. Bischofszell: Kabinett Verlag, p.61.
- ↑ http://www.chemheritage.org/discover/online-resources/chemistry-in-history/themes/petrochemistry-and-synthetic-polymers/synthetic-polymers/kwolek.aspx
Externí odkazy
[editovat | editovat zdroj]- Obrázky, zvuky či videa k tématu Neprůstřelná vesta na Wikimedia Commons
- Neprůstřelné vesty
- Neprůstřelné vesty – mnoho zajímavých fotek
- Český úřad pro zkoušení zbraní a střeliva
- Český úřad pro zkoušení zbraní a střeliva – balistická odolnost
- Body Armor Test (anglicky) Archivováno 29. 11. 2006 na Wayback Machine.
- International ballistic testing standards for body armour (anglicky) Archivováno 6. 12. 2006 na Wayback Machine.
- How Stuff Works – Body Armor
- Český výrobce Petris [1]
- Videa