Přeskočit na obsah

Pierre de Fermat

Z Wikipedie, otevřené encyklopedie
Pierre de Fermat
Narození1607
Beaumont-de-Lomagne
Úmrtí12. ledna 1665 (ve věku 57–58 let)
Castres
Místo pohřbeníCastres (43°36′20″ s. š., 2°14′30″ v. d.)
Alma materStará orleánská univerzita (od 1623)
Povolánímatematik, advokát, soudce a polyglot
ZaměstnavatelParlament Toulouse (od 1638)
ChoťLouise de Long (od 1631)[1]
Logo Wikimedia Commons multimediální obsah na Commons
Některá data mohou pocházet z datové položky.

Pierre de Fermat (1607 Beaumont-de-Lomagne12. ledna 1665 Castres) byl francouzský matematik.

Ačkoli byl ve vědě amatér (občanským povoláním právník), zasloužil se o rozvoj matematiky v několika oblastech:

Teorie čísel – patří ke spoluzakladatelům oboru v jeho moderní podobě a získal několik důležitých poznatků. Známá je především tzv. Velká Fermatova věta. Tu ovšem dokázal až Andrew Wiles roku 1994. Fermat tvrdil, že její důkaz zná. Pravděpodobně se však mýlil, neboť veškeré pokusy o jednoduchý důkaz věty ztroskotaly, zatímco Wilesův důkaz předpokládá obrovské množství poznatků získaných matematiky až v průběhu 19. a 20. století. Fermat tudíž nemohl mít v ruce potřebné nástroje pro vypracování podobného důkazu.

Teorie pravděpodobnosti – spolu s Pascalem je považován za spoluzakladatele oboru, který zahájili úvahami o pravděpodobnostech výhry v hazardních hrách.

Matematická analýza a analytická geometrie – objevil mimo jiné metodu hledání extrémů křivky, která je přímým předchůdcem pozdějších výsledků diferenciálního počtu. Do této oblasti patří i formulace Fermatova principu.

Fermatova čísla - Fermat se domníval, že všechna čísla tvaru 2n + 1, kde n = 2m, m = 0,1,2,…, jsou prvočísla. Toto platí však pouze pro prvních pět těchto tzv. Fermatových čísel (F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65 537). V 18. století ale Leonhard Euler dokázal, že F5 je dělitelné 641, tedy že je složené číslo, čímž Fermatovu domněnku vyvrátil.

V roce 1796 Carl Friedrich Gauss objevil souvislost mezi geometrií a Fermatovými čísly. Dokázal, že pravidelný mnohoúhelník s lichým počtem vrcholů je eukleidovsky konstruovatelný (pomocí kružítka a pravítka) pouze tehdy, když je počet jeho vrcholů roven některému Fermatovu prvočíslu nebo součinu několika vzájemně různých Fermatových prvočísel. Přes snahy mnohých matematiků dodnes není známo, kolik existuje Fermatových čísel složených a kolik prvočíselných. Zatím největší známé Fermatovo prvočíslo je právě F4. Pro čísla F5 až F23 bylo dokázáno, že jde o čísla složená, i když ne u všech je znám úplný rozklad. Úplný rozklad je znám pro čísla F5, F6, F7, F8, F9 F10 a F11

  1. Complete Dictionary of Scientific Biography. Detroit: Charles Scribner's Sons. 2008. ISBN 978-0-684-31559-1.

Externí odkazy

[editovat | editovat zdroj]
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy