Neidio i'r cynnwys

Integryn

Oddi ar Wicipedia

Un o brif gysyniadau'r calcwlws yw integryn (lluosog: integrynnau). Pwrpas integreiddio rhifiadol yw i ddod o hyd i ardal o dan y gromlin rhwng dau bwynt diwedd. Hynny yw y gallu i werthuso

lle mae a a b cael eu rhoi ac mae f yn ffwythiant a roddwyd yn ddadansoddol neu fel tabl o werthoedd.

Integryn pendant

[golygu | golygu cod]
Yr arwynebedd, S, dan y graff yw'r integryn pendant,

Ystyriwch wrthrych sy'n teithio ar fuanedd cyson. Gellir darganfod y pellter a deithiwyd ar ôl rhyw amser x drwy luosi'r buanedd gyda'r amser. Ystyriwch yn awr wrthrych sy'n teithio ar fuanedd anghyson, f. Ar y graff ar y dde, y = f, x yw amser, ac ardal S yw'r pellter a deithiwyd yn ystod y cyfnod b - a. Nid yw lluosi syml yn ddigonol i ddarganfod y pellter a deithiwyd gan fod y buanedd yn newid o un eiliad i'r llall. Fodd bynnag gallem rannu'r cyfnod o amser i mewn i ysbeidiau bach hafal, δx. Yna gallem luosi pob ysbaid δx gydag un o'r buaneddau f yn ei ystod. Yn olaf er mwyn cael bras amcan o'r pellter S a deithiwyd gallem adio i fyny'r cynyddrannau pellter f * δx:

Er mwyn gwella'r bras amcan gellir rhannu'r cyfnod o amser i mewn i ysbeidiau δx llai ac ail adrodd y broses. Wrth i δx agosáu at 0, mae nifer yr ysbeidiau, N, yn agosáu at anfeidredd ac mae'r swm uchod yn agosáu at derfyn sy'n hafal i'r pellter a deithiwyd. Yr integryn yw'r terfyn hwn ble mae f yn ffwythiant o x:

ble

Mae'r terfyn uchod yn ddiffiniad o'r gweithrediad rhifadol sy'n rhoi integryn y ffwythiant f(x). Fodd bynnag o ganlyniad i ddamcaniaeth sylfaenol calcwlws a ddarganfuwyd gan Isaac Newton a Gottfried Wilhelm Leibniz yn y 1670au gellir cyfrifo'r integryn pendant drwy werthuso gwrthddifferiadau:

ble

Integryn amhendant

[golygu | golygu cod]

Y gwrthddifferiad yw'r integryn amhendant. Hynny yw ffwythiant gyda'r gwerth canlynol ar bob pwynt x:

lle mae a yn gysonyn, annibynnol o x.

Fe ysgrifennir yr integryn amhendant yn gyffredin fel:

O ganlyniad i'r berthynas wrthdro rhwng differu ac integru, os cyfrifir deilliad integryn, y ffwythiant gwreiddiol yw'r canlyniad:

Os mae g(x) yn integryn amhendant f(x), mae g(x)+C hefyd yn integryn amhendant f(x) ar gyfer pob cysonyn C annibynnol o x. Nid un ffwythiant yw integryn amhendant, felly, eithr cyfres o ffwythiannau, a wahanir drwy adio cysonyn.

Integrynnau cyffredin

[golygu | golygu cod]
  • Polynymiad:
  • Ffwythiant exp(x):
  • Ffwythiant x-1:
  • Deilliad gwrthdro ffwythiant tan:

Ysgrifennu'r symbol ar gyfrifaduron

[golygu | golygu cod]

Côd ar gyfer y symbol ∫ yw 222B hecsadegol yn Unicode; gellir ei ysgrifennu fel ∫ yn HTML.

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy