default search action
Marek Smieja
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j23]Ewelina Jamrozik, Marek Smieja, Sabina Podlewska:
ADMET-PrInt: Evaluation of ADMET Properties: Prediction and Interpretation. J. Chem. Inf. Model. 64(5): 1425-1432 (2024) - [j22]Marcin Przewiezlikowski, Mateusz Pyla, Bartosz Zielinski, Bartlomiej Twardowski, Jacek Tabor, Marek Smieja:
Augmentation-aware self-supervised learning with conditioned projector. Knowl. Based Syst. 305: 112572 (2024) - [j21]Magdalena Proszewska, Maciej Wolczyk, Maciej Zieba, Patryk Wielopolski, Lukasz Maziarka, Marek Smieja:
Multi-Label Conditional Generation From Pre-Trained Models. IEEE Trans. Pattern Anal. Mach. Intell. 46(9): 6185-6198 (2024) - [c27]Maciej Zieba, Marcin Przewiezlikowski, Marek Smieja, Jacek Tabor, Tomasz Trzcinski, Przemyslaw Spurek:
RegFlow: Probabilistic Flow-Based Regression for Future Prediction. ACIIDS (Companion 2) 2024: 267-279 - [c26]Andrzej Bedychaj, Jacek Tabor, Marek Smieja:
StyleAutoEncoder for Manipulating Image Attributes Using Pre-trained StyleGAN. PAKDD (2) 2024: 118-130 - [c25]Marcin Przewiezlikowski, Marcin Osial, Bartosz Zielinski, Marek Smieja:
A Deep Cut Into Split Federated Self-Supervised Learning. ECML/PKDD (2) 2024: 444-459 - [c24]Adrian Suwala, Bartosz Wójcik, Magdalena Proszewska, Jacek Tabor, Przemyslaw Spurek, Marek Smieja:
Face Identity-Aware Disentanglement in StyleGAN. WACV 2024: 5210-5219 - [i43]Marcin Przewiezlikowski, Marcin Osial, Bartosz Zielinski, Marek Smieja:
A deep cut into Split Federated Self-supervised Learning. CoRR abs/2406.08267 (2024) - [i42]Piotr Gainski, Michal Koziarski, Krzysztof Maziarz, Marwin H. S. Segler, Jacek Tabor, Marek Smieja:
RetroGFN: Diverse and Feasible Retrosynthesis using GFlowNets. CoRR abs/2406.18739 (2024) - [i41]Marcin Przewiezlikowski, Randall Balestriero, Wojciech Jasinski, Marek Smieja, Bartosz Zielinski:
Beyond [cls]: Exploring the true potential of Masked Image Modeling representations. CoRR abs/2412.03215 (2024) - 2023
- [j20]Bartosz Wójcik, Marcin Przewiezlikowski, Filip Szatkowski, Maciej Wolczyk, Klaudia Balazy, Bartlomiej Krzepkowski, Igor T. Podolak, Jacek Tabor, Marek Smieja, Tomasz Trzcinski:
Zero time waste in pre-trained early exit neural networks. Neural Networks 168: 580-601 (2023) - [c23]Witold Wydmanski, Oleksii Bulenok, Marek Smieja:
HyperTab: Hypernetwork Approach for Deep Learning on Small Tabular Datasets. DSAA 2023: 1-9 - [c22]Pawel Morawiecki, Andrii Krutsylo, Maciej Wolczyk, Marek Smieja:
Hebbian Continual Representation Learning. HICSS 2023: 1259-1268 - [c21]Klaudia Balazy, Lukasz Struski, Marek Smieja, Jacek Tabor:
r-softmax: Generalized Softmax with Controllable Sparsity Rate. ICCS (2) 2023: 137-145 - [c20]Piotr Gainski, Michal Koziarski, Jacek Tabor, Marek Smieja:
ChiENN: Embracing Molecular Chirality with Graph Neural Networks. ECML/PKDD (3) 2023: 36-52 - [c19]Michal Znalezniak, Przemyslaw Rola, Patryk Kaszuba, Jacek Tabor, Marek Smieja:
Contrastive Hierarchical Clustering. ECML/PKDD (1) 2023: 627-643 - [c18]Lukasz Struski, Tomasz Danel, Marek Smieja, Jacek Tabor, Bartosz Zielinski:
SONGs: Self-Organizing Neural Graphs. WACV 2023: 3837-3846 - [i40]Michal Znalezniak, Przemyslaw Rola, Patryk Kaszuba, Jacek Tabor, Marek Smieja:
Contrastive Hierarchical Clustering. CoRR abs/2303.03389 (2023) - [i39]Witold Wydmanski, Oleksii Bulenok, Marek Smieja:
HyperTab: Hypernetwork Approach for Deep Learning on Small Tabular Datasets. CoRR abs/2304.03543 (2023) - [i38]Klaudia Balazy, Lukasz Struski, Marek Smieja, Jacek Tabor:
r-softmax: Generalized Softmax with Controllable Sparsity Rate. CoRR abs/2304.05243 (2023) - [i37]Marcin Przewiezlikowski, Mateusz Pyla, Bartosz Zielinski, Bartlomiej Twardowski, Jacek Tabor, Marek Smieja:
Augmentation-aware Self-supervised Learning with Guided Projector. CoRR abs/2306.06082 (2023) - [i36]Piotr Gainski, Michal Koziarski, Jacek Tabor, Marek Smieja:
ChiENN: Embracing Molecular Chirality with Graph Neural Networks. CoRR abs/2307.02198 (2023) - [i35]Adrian Suwala, Bartosz Wójcik, Magdalena Proszewska, Jacek Tabor, Przemyslaw Spurek, Marek Smieja:
Face Identity-Aware Disentanglement in StyleGAN. CoRR abs/2309.12033 (2023) - 2022
- [j19]Bartosz Wójcik, Jacek Grela, Marek Smieja, Krzysztof Misztal, Jacek Tabor:
SLOVA: Uncertainty estimation using single label one-vs-all classifier. Appl. Soft Comput. 126: 109219 (2022) - [j18]Lukasz Maziarka, Marek Smieja, Marcin Sendera, Lukasz Struski, Jacek Tabor, Przemyslaw Spurek:
OneFlow: One-Class Flow for Anomaly Detection Based on a Minimal Volume Region. IEEE Trans. Pattern Anal. Mach. Intell. 44(11): 8508-8519 (2022) - [c17]Maciej Wolczyk, Magdalena Proszewska, Lukasz Maziarka, Maciej Zieba, Patryk Wielopolski, Rafal Kurczab, Marek Smieja:
PluGeN: Multi-Label Conditional Generation from Pre-trained Models. AAAI 2022: 8647-8656 - [c16]Sophie Steger, Bernhard C. Geiger, Marek Smieja:
Semi-supervised clustering via information-theoretic markov chain aggregation. SAC 2022: 1136-1139 - [c15]Marcin Przewiezlikowski, Marek Smieja, Lukasz Struski, Jacek Tabor:
MisConv: Convolutional Neural Networks for Missing Data. WACV 2022: 2917-2926 - [i34]Bartosz Wójcik, Jacek Grela, Marek Smieja, Krzysztof Misztal, Jacek Tabor:
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier. CoRR abs/2206.13923 (2022) - [i33]Pawel Morawiecki, Andrii Krutsylo, Maciej Wolczyk, Marek Smieja:
Hebbian Continual Representation Learning. CoRR abs/2207.04874 (2022) - 2021
- [j17]Dawid Warszycki, Lukasz Struski, Marek Smieja, Rafal Kafel, Rafal Kurczab:
Pharmacoprint: A Combination of a Pharmacophore Fingerprint and Artificial Intelligence as a Tool for Computer-Aided Drug Design. J. Chem. Inf. Model. 61(10): 5054-5065 (2021) - [j16]Marek Smieja, Maciej Wolczyk, Jacek Tabor, Bernhard C. Geiger:
SeGMA: Semi-Supervised Gaussian Mixture Autoencoder. IEEE Trans. Neural Networks Learn. Syst. 32(9): 3930-3941 (2021) - [c14]Bartosz Wójcik, Pawel Morawiecki, Marek Smieja, Tomasz Krzyzek, Przemyslaw Spurek, Jacek Tabor:
Adversarial Examples Detection and Analysis with Layer-wise Autoencoders. ICTAI 2021: 1322-1326 - [c13]Maciej Wolczyk, Bartosz Wójcik, Klaudia Balazy, Igor T. Podolak, Jacek Tabor, Marek Smieja, Tomasz Trzcinski:
Zero Time Waste: Recycling Predictions in Early Exit Neural Networks. NeurIPS 2021: 2516-2528 - [i32]Maciej Wolczyk, Bartosz Wójcik, Klaudia Balazy, Igor T. Podolak, Jacek Tabor, Marek Smieja, Tomasz Trzcinski:
Zero Time Waste: Recycling Predictions in Early Exit Neural Networks. CoRR abs/2106.05409 (2021) - [i31]Lukasz Struski, Tomasz Danel, Marek Smieja, Jacek Tabor, Bartosz Zielinski:
SONG: Self-Organizing Neural Graphs. CoRR abs/2107.13214 (2021) - [i30]Marcin Sendera, Marek Smieja, Lukasz Maziarka, Lukasz Struski, Przemyslaw Spurek, Jacek Tabor:
Flow-based SVDD for anomaly detection. CoRR abs/2108.04907 (2021) - [i29]Maciej Wolczyk, Magdalena Proszewska, Lukasz Maziarka, Maciej Zieba, Patryk Wielopolski, Rafal Kurczab, Marek Smieja:
PluGeN: Multi-Label Conditional Generation From Pre-Trained Models. CoRR abs/2109.09011 (2021) - [i28]Dawid Warszycki, Lukasz Struski, Marek Smieja, Rafal Kafel, Rafal Kurczab:
Pharmacoprint - a combination of pharmacophore fingerprint and artificial intelligence as a tool for computer-aided drug design. CoRR abs/2110.01339 (2021) - [i27]Marcin Przewiezlikowski, Marek Smieja, Lukasz Struski, Jacek Tabor:
MisConv: Convolutional Neural Networks for Missing Data. CoRR abs/2110.14010 (2021) - [i26]Sophie Steger, Bernhard C. Geiger, Marek Smieja:
Semi-Supervised Clustering via Markov Chain Aggregation. CoRR abs/2112.09397 (2021) - 2020
- [j15]Lukasz Struski, Marek Smieja, Jacek Tabor:
Pointed Subspace Approach to Incomplete Data. J. Classif. 37(1): 42-57 (2020) - [j14]Marek Smieja, Lukasz Struski, Mário A. T. Figueiredo:
A classification-based approach to semi-supervised clustering with pairwise constraints. Neural Networks 127: 193-203 (2020) - [c12]Pawel Morawiecki, Przemyslaw Spurek, Marek Smieja, Jacek Tabor:
Fast and Stable Interval Bounds Propagation for Training Verifiably Robust Models. ESANN 2020: 55-60 - [c11]Marcin Przewiezlikowski, Marek Smieja, Lukasz Struski:
Estimating Conditional Density of Missing Values Using Deep Gaussian Mixture Model. ICONIP (3) 2020: 220-231 - [c10]Marek Smieja, Maciej Kolomycki, Lukasz Struski, Mateusz Juda, Mário A. T. Figueiredo:
Iterative Imputation of Missing Data Using Auto-Encoder Dynamics. ICONIP (3) 2020: 258-269 - [c9]Tomasz Danel, Marek Smieja, Lukasz Struski, Przemyslaw Spurek, Lukasz Maziarka:
Processing of Incomplete Images by (Graph) Convolutional Neural Networks. ICONIP (2) 2020: 512-523 - [c8]Tomasz Danel, Przemyslaw Spurek, Jacek Tabor, Marek Smieja, Lukasz Struski, Agnieszka Slowik, Lukasz Maziarka:
Spatial Graph Convolutional Networks. ICONIP (5) 2020: 668-675 - [i25]Marek Smieja, Lukasz Struski, Mário A. T. Figueiredo:
A Classification-Based Approach to Semi-Supervised Clustering with Pairwise Constraints. CoRR abs/2001.06720 (2020) - [i24]Bartosz Wójcik, Pawel Morawiecki, Marek Smieja, Tomasz Krzyzek, Przemyslaw Spurek, Jacek Tabor:
Adversarial Examples Detection and Analysis with Layer-wise Autoencoders. CoRR abs/2006.10013 (2020) - [i23]Marcin Przewiezlikowski, Marek Smieja, Lukasz Struski:
Estimating conditional density of missing values using deep Gaussian mixture model. CoRR abs/2010.02183 (2020) - [i22]Lukasz Maziarka, Marek Smieja, Marcin Sendera, Lukasz Struski, Jacek Tabor, Przemyslaw Spurek:
Flow-based anomaly detection. CoRR abs/2010.03002 (2020) - [i21]Tomasz Danel, Marek Smieja, Lukasz Struski, Przemyslaw Spurek, Lukasz Maziarka:
Processing of incomplete images by (graph) convolutional neural networks. CoRR abs/2010.13914 (2020) - [i20]Maciej Zieba, Marcin Przewiezlikowski, Marek Smieja, Jacek Tabor, Tomasz Trzcinski, Przemyslaw Spurek:
RegFlow: Probabilistic Flow-based Regression for Future Prediction. CoRR abs/2011.14620 (2020)
2010 – 2019
- 2019
- [j13]Marek Smieja, Krzysztof Hajto, Jacek Tabor:
Efficient mixture model for clustering of sparse high dimensional binary data. Data Min. Knowl. Discov. 33(6): 1583-1624 (2019) - [j12]Marek Smieja, Lukasz Struski, Jacek Tabor, Mateusz Marzec:
Generalized RBF kernel for incomplete data. Knowl. Based Syst. 173: 150-162 (2019) - [j11]Marek Smieja, Jacek Tabor, Przemyslaw Spurek:
SVM with a neutral class. Pattern Anal. Appl. 22(2): 573-582 (2019) - [j10]Lukasz Struski, Przemyslaw Spurek, Jacek Tabor, Marek Smieja:
Projected memory clustering. Pattern Recognit. Lett. 123: 9-15 (2019) - [c7]Sylwester Klocek, Lukasz Maziarka, Maciej Wolczyk, Jacek Tabor, Jakub Nowak, Marek Smieja:
Hypernetwork Functional Image Representation. ICANN (Workshop) 2019: 496-510 - [c6]Lukasz Maziarka, Marek Smieja, Aleksandra Nowak, Jacek Tabor, Lukasz Struski, Przemyslaw Spurek:
Set Aggregation Network as a Trainable Pooling Layer. ICONIP (2) 2019: 419-431 - [i19]Sylwester Klocek, Lukasz Maziarka, Maciej Wolczyk, Jacek Tabor, Marek Smieja, Jakub Nowak:
Multi-task hypernetworks. CoRR abs/1902.10404 (2019) - [i18]Pawel Morawiecki, Przemyslaw Spurek, Marek Smieja, Jacek Tabor:
Fast and Stable Interval Bounds Propagation for Training Verifiably Robust Models. CoRR abs/1906.00628 (2019) - [i17]Marek Smieja, Maciej Wolczyk, Jacek Tabor, Bernhard C. Geiger:
SeGMA: Semi-Supervised Gaussian Mixture Auto-Encoder. CoRR abs/1906.09333 (2019) - [i16]Przemyslaw Spurek, Tomasz Danel, Jacek Tabor, Marek Smieja, Lukasz Struski, Agnieszka Slowik, Lukasz Maziarka:
Geometric Graph Convolutional Neural Networks. CoRR abs/1909.05310 (2019) - [i15]Maciej Wolczyk, Jacek Tabor, Marek Smieja, Szymon Maszke:
Biologically-Inspired Spatial Neural Networks. CoRR abs/1910.02776 (2019) - 2018
- [j9]Marek Smieja, Oleksandr Myronov, Jacek Tabor:
Semi-supervised discriminative clustering with graph regularization. Knowl. Based Syst. 151: 24-36 (2018) - [j8]Przemyslaw Spurek, Jacek Tabor, Lukasz Struski, Marek Smieja:
Fast independent component analysis algorithm with a simple closed-form solution. Knowl. Based Syst. 161: 26-34 (2018) - [c5]Marek Smieja, Lukasz Struski, Jacek Tabor, Bartosz Zielinski, Przemyslaw Spurek:
Processing of missing data by neural networks. NeurIPS 2018: 2724-2734 - [i14]Bartosz Zielinski, Lukasz Struski, Marek Smieja, Jacek Tabor:
Cascade context encoder for improved inpainting. CoRR abs/1803.04033 (2018) - [i13]Marek Smieja, Lukasz Struski, Jacek Tabor, Bartosz Zielinski, Przemyslaw Spurek:
Processing of missing data by neural networks. CoRR abs/1805.07405 (2018) - [i12]Lukasz Maziarka, Marek Smieja, Aleksandra Nowak, Jacek Tabor, Lukasz Struski, Przemyslaw Spurek:
Deep processing of structured data. CoRR abs/1810.01868 (2018) - 2017
- [j7]Marek Smieja, Magdalena Wiercioch:
Constrained clustering with a complex cluster structure. Adv. Data Anal. Classif. 11(3): 493-518 (2017) - [j6]Marek Smieja, Lukasz Struski, Jacek Tabor:
Semi-supervised model-based clustering with controlled clusters leakage. Expert Syst. Appl. 85: 146-157 (2017) - [j5]Przemyslaw Spurek, Konrad Kamieniecki, Jacek Tabor, Krzysztof Misztal, Marek Smieja:
R Package CEC. Neurocomputing 237: 410-413 (2017) - [j4]Marek Smieja, Bernhard C. Geiger:
Semi-supervised cross-entropy clustering with information bottleneck constraint. Inf. Sci. 421: 254-271 (2017) - [i11]Lukasz Struski, Marek Smieja, Jacek Tabor:
Pointed subspace approach to incomplete data. CoRR abs/1705.00840 (2017) - [i10]Marek Smieja, Bernhard C. Geiger:
Semi-supervised cross-entropy clustering with information bottleneck constraint. CoRR abs/1705.01601 (2017) - [i9]Marek Smieja, Lukasz Struski, Jacek Tabor:
Semi-supervised model-based clustering with controlled clusters leakage. CoRR abs/1705.01877 (2017) - [i8]Marek Smieja, Jacek Tabor:
Spherical Wards clustering and generalized Voronoi diagrams. CoRR abs/1705.02232 (2017) - [i7]Marek Smieja, Krzysztof Hajto, Jacek Tabor:
Efficient mixture model for clustering of sparse high dimensional binary data. CoRR abs/1707.03157 (2017) - 2016
- [c4]Marek Smieja, Szymon Nakoneczny, Jacek Tabor:
Fast Entropy Clustering of sparse high dimensional binary data. IJCNN 2016: 2397-2404 - [i6]Lukasz Struski, Marek Smieja, Jacek Tabor:
Incomplete data representation for SVM classification. CoRR abs/1612.01480 (2016) - 2015
- [j3]Marek Smieja, Jacek Tabor:
Entropy Approximation in Lossy Source Coding Problem. Entropy 17(5): 3400-3418 (2015) - [j2]Marek Smieja:
Weighted approach to general entropy function. IMA J. Math. Control. Inf. 32(2): 329-341 (2015) - [c3]Marek Smieja, Jacek Tabor:
Spherical wards clustering and generalized Voronoi diagrams. DSAA 2015: 1-10 - [i5]Jacek Tabor, Przemyslaw Spurek, Konrad Kamieniecki, Marek Smieja, Krzysztof Misztal:
Introduction to Cross-Entropy Clustering The R Package CEC. CoRR abs/1508.04559 (2015) - 2014
- [c2]Przemyslaw Spurek, Marek Smieja, Krzysztof Misztal:
Subspaces Clustering Approach to Lossy Image Compression. CISIM 2014: 571-579 - 2013
- [c1]Marek Smieja, Jacek Tabor:
Image Segmentation with Use of Cross-Entropy Clustering. CORES 2013: 403-409 - [i4]Marek Smieja:
Weighted Approach to General Entropy Function. CoRR abs/1305.3040 (2013) - 2012
- [j1]Marek Smieja, Jacek Tabor:
Entropy of the Mixture of Sources and Entropy Dimension. IEEE Trans. Inf. Theory 58(5): 2719-2728 (2012) - [i3]Marek Smieja, Jacek Tabor:
Weighted Approach to Rényi Entropy. CoRR abs/1204.0075 (2012) - [i2]Marek Smieja, Jacek Tabor:
Partition Reduction for Lossy Data Compression Problem. CoRR abs/1204.0078 (2012) - 2011
- [i1]Marek Smieja, Jacek Tabor:
Entropy of the Mixture of Sources and Entropy Dimension. CoRR abs/1110.6027 (2011)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-20 22:48 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint