Die Bhabha-Streuung, benannt nach dem indischen Physiker Homi J. Bhabha, ist ein quantenelektrodynamischer Streuprozess zwischen einem Teilchen und seinem Antiteilchen, beispielsweise zwischen Elektron und Positron. Für die Formeln wird das natürliche Einheitensystem für die Teilchenphysik verwendet.

Streuprozess

Bearbeiten

Definition

Bearbeiten

Der Streuprozess der Bhabha-Streuung lässt sich durch die Gleichung

 

beschreiben. Dabei wird ein virtuelles Photon als Austauschteilchen der elektromagnetischen Wechselwirkung erzeugt und vernichtet. Die quantenelektrodynamischen Streuprozesse können anschaulich durch Feynman-Diagramme dargestellt werden, die sich in stringente mathematische Ausdrücke für Wirkungsquerschnitte übertragen lassen. Da virtuelle Teilchen nicht beobachtet werden können, müssen alle verbundenen Feynman-Diagramme mit einem ein- und ausgehenden Elektron-Positron-Paar betrachtet werden.

 
Klassischer elektrodynamischer Streuprozess
 
Annihilation von Elektron und Positron mit Paarerzeugung

Das linke Diagramm beschreibt dabei einen klassischen elektrodynamischen Streuprozess, bei dem Elektron und Positron über eine Fernwirkung der elektromagnetischen Wechselwirkung unterliegen; das rechte einen Prozess, welcher nur durch Erzeugung und Vernichtung von Teilchen in den Quantenfeldtheorien erklärt werden kann. In Anlehnung an die Mandelstam-Variablen wird der linke Prozess t-Kanal, der rechte s-Kanal genannt.

Matrixelemente

Bearbeiten

Das Matrixelement   der Bhabha-Streuung besteht aufgrund der Fermi-Dirac-Statistik aus der Differenz der Matrixelemente der einzelnen Streuprozesse. Bezeichnen   die Viererimpulse des ein- bzw. ausgehenden Positrons und   die des Elektrons,   die Dirac-Matrizen und   sowie   die Dirac-Spinoren für Teilchen bzw. Antiteilchen. Ein Querstrich über einem Spinor steht für die Dirac-Adjungierte   und   ist die Elementarladung.

Dann gilt nach den Feynman-Regeln der Quantenelektrodynamik:

 
 

In den Nennern treten dabei die Lorentz-invarianten Mandelstam-Variablen   und   auf, welche namensgebend für die entsprechenden Kanäle sind. Das gesamte Matrixelement ist daher:

 

Für die Umwandlung des Matrixelements in einen Wirkungsquerschnitt benötigt man dessen Betragsquadrat. Da im Regelfall die Spineinstellungen des Elektron-Positron-Paars vor dem Streuprozess nicht bekannt sind und die Einstellungen nach dem Prozess irrelevant sind, tritt im Wirkungsquerschnitt das Spin-gemittelte quadrierte Matrixelement   auf, welches sich mithilfe Casimirs Trick stark vereinfachen lässt:

 .

Der erste Term beschreibt die Wechselwirkung über den t-Kanal, der zweite die über den s-Kanal und der dritte ist der Interferenzterm aus der Quadrierung.

Unterschied zur Møller-Streuung

Bearbeiten

Im Gegensatz zur Møller-Streuung, die die Elektron-Elektron-Streuung beschreibt, sind die beteiligten Objekte der Bhabha-Streuung unterscheidbar. Dies führt dazu, dass kein u-Kanal-Prozess aus der Vertauschung der beiden Streupartner im Vergleich zum t-Kanal auftritt. Hingegen sind Elektron und Positron ihre jeweiligen Antiteilchen, sodass der s-Kanal-Prozess als Annihilations-Paarerzeugungs-Prozess stattfinden kann.

Wirkungsquerschnitt

Bearbeiten

Differentieller Wirkungsquerschnitt

Bearbeiten

Im Gegensatz zum Lorentz-invarianten Matrixelement ist der differentielle Wirkungsquerschnitt   bezugssystemabhängig, da das Raumwinkelelement   vom gewählten Bezugssystem abhängt. Es bietet sich an, alle Rechnungen im Schwerpunktsystem durchzuführen und dann, wenn benötigt, einer Lorentz-Transformation in ein beliebiges anderes, zum Beispiel das Laborsystem, zu unterwerfen.

Im Schwerpunktsystem gilt:

 

Hochenergetischer Grenzfall

Bearbeiten

Der hochenergetische (relativistische) Grenzfall ist dadurch definiert, dass die Schwerpunktsenergie   groß gegenüber der Elektronenmasse ist. Dadurch vereinfacht sich das Matrixelement zu

 ,

wenn die kinematischen Variablen   durch die Mandelstam-Variablen   ausgedrückt werden. Dabei ist   die dritte, nicht von   und   unabhängige Mandelstam-Variable. In dieser Darstellung ist die Crossing-Symmetrie zwischen s- und t-Kanal ersichtlich, da alle vorkommenden Größen symmetrisch in diesen beiden Variablen sind (dies ist jedoch bereits ungenähert der Fall).

Der differentielle Wirkungsquerschnitt lautet also

 .

Drückt man zusätzlich die Mandelstam-Variablen durch die Energie   der Streupartner, den eingeschlossenen Streuwinkel   und die Feinstrukturkonstante   aus, so ergibt sich für den differentiellen Wirkungsquerschnitt:[1]

 

Durch diese Zerlegung wird die Struktur der Streuung sichtbar, da der erste Summand die klassische Erwartung durch die Rutherford-Streuung zweier geladener Teilchen angibt und der zweite die quantenelektrodynamische und Spin-Korrektur darstellt.

Literatur

Bearbeiten
  • David Griffiths: Einführung in die Elementarteilchenphysik. (Übersetzt von Thomas Stange). Akademie-Verlag, Berlin 1996. ISBN 3-05-501627-0.
  • Michael E. Peskin und Daniel V. Schroeder. An Introduction to Quantum Field Theory. Perseus Books Publishing 1995, ISBN 0-201-50397-2.

Einzelnachweise

Bearbeiten
  1. Daniel V. Schroeder: Electron-Positron Scattering. (pdf) Abgerufen am 8. Oktober 2018.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy