Kommutativgesetz

Regel der Algebra, die erlaubt, Argumente einer Operation zu tauschen

Das Kommutativgesetz (lateinisch commutare ‚vertauschen‘), auf Deutsch Vertauschungsgesetz, ist eine Regel aus der Mathematik. Wenn sie gilt, können die Argumente einer Operation vertauscht werden, ohne dass sich das Ergebnis verändert. Mathematische Operationen, die dem Kommutativgesetz unterliegen, nennt man kommutativ.

Eine Verknüpfung ist kommutativ, wenn stets gilt. In dieser Abbildung wird die Vorstellung einer Operation als Maschine genutzt, die aus zwei Eingaben ein Ergebnis macht. Wenn die Verknüpfung kommutativ ist, dann ist es egal, in welcher Reihenfolge die Eingaben und auftreten – das Ergebnis ist dasselbe wie .

Das Kommutativgesetz bildet mit dem Assoziativgesetz und dem Distributivgesetz grundlegende Regeln der Algebra.

Formale Definition

Bearbeiten

Es seien   und   Mengen. Eine binäre Verknüpfung   heißt kommutativ, wenn für alle   die Gleichheit   gilt.

Beispiele und Gegenbeispiele

Bearbeiten
 
Die Vektoraddition ist kommutativ, weil   ist.

Reelle Zahlen

Bearbeiten
 
Die Addition natürlicher Zahlen ist kommutativ.

Für reelle Zahlen   gilt stets

 

und

 ,

die Operationen Addition und Multiplikation sind also kommutativ. Die erste Formel wird auch Kommutativgesetz der Addition, die zweite Kommutativgesetz der Multiplikation genannt. Die Subtraktion und die Division reeller Zahlen sind dagegen keine kommutativen Operationen. Auch die Potenzierung ist nicht kommutativ (  ist ein Gegenbeispiel).

Die älteste überlieferte Form des Kommutativgesetzes der Addition ist die sumerische Fabel vom klugen Wolf und den neun dummen Wölfen.

Skalarprodukte

Bearbeiten
  • Das Skalarprodukt in einem reellen Vektorraum ist kommutativ, es gilt also stets  .
  • Das Skalarprodukt in einem komplexen Vektorraum ist dagegen nicht kommutativ, es gilt vielmehr  , wobei der Überstrich die komplexe Konjugation bezeichnet.

Mengenoperation

Bearbeiten

In der Mengenlehre sind die Vereinigung und der Schnitt kommutative Operationen; für Mengen   gilt also stets:

  (Vereinigung)
  (Schnitt)

Dagegen ist die Differenz nicht kommutativ.   und   sind also manchmal verschiedene Mengen, z. B. für   und  , denn dann wäre   und  .

Matrizenrechnung

Bearbeiten

Die Addition von Matrizen über einem Ring oder Körper ist kommutativ. Die Matrizenmultiplikation ist dagegen nicht kommutativ: Die Faktoren sind zwar manchmal, aber nicht immer vertauschbar.

Ebenfalls kommutativ sind die Multiplikation von Matrizen mit Skalaren und die Matrizenmultiplikation im Unterring der Diagonalmatrizen.

Gruppentheorie

Bearbeiten

Allgemein nennt man eine Gruppe, bei der die Verknüpfung von Gruppenelementen kommutativ ist, abelsch.

Aussagenlogik

Bearbeiten

In der Aussagenlogik gilt für die Junktoren:

  •   („oder“) ist kommutativ.
  •   („und“) ist kommutativ.
  •   („logische Äquivalenz“) ist kommutativ.
  •   („wenn …, dann …“; siehe Implikation) ist nicht kommutativ.

Weitere Beispiele

Bearbeiten

Weitere Beispiele für nichtkommutative Operationen sind das Kreuzprodukt in Vektorräumen oder die Multiplikation von Quaternionen.

Kommutativität ist außerdem eine wichtige Grundeigenschaft in der Quantenmechanik, das Kommutieren zweier Observablen bedeutet physikalisch deren gleichzeitige genaue Messbarkeit. Nicht alle Observablen kommutieren.

Antikommutativität

Bearbeiten
 
Das Kreuzprodukt ist antikommutativ (hier ein Rechtssystem)

In einigen Strukturen mit zwei Operationen, beispielsweise beim Kreuzprodukt   in Vektorräumen, gilt nicht das Kommutativgesetz, sondern stattdessen eine Art Gegensatz davon:

 .

Allgemeiner erfüllt das Produkt auf einer Lie-Algebra, das als   geschrieben wird, die Antikommutativität.

Anmerkungen

Bearbeiten
Symmetrische Relation

Die Kommutativität, die das Vertauschen von Argumenten bei einer Operation erlaubt, weist Ähnlichkeit mit der Symmetrie-Eigenschaft von Relationen auf, die das Vertauschen der verglichenen Elemente bzgl. der Relation erlaubt:   genau dann, wenn  .

Flexibilitätsgesetz

Eine alternative Möglichkeit des „Um-Klammerns“ bietet das Flexibilitätsgesetz für eine Verknüpfung  :

 

Siehe auch

Bearbeiten

Literatur

Bearbeiten
  • Otto Forster: Differential- und Integralrechnung einer Veränderlichen (= Analysis. Band 1). 10. Auflage. Vieweg & Teubner, Braunschweig 2011, ISBN 978-3-8348-1251-3.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy