Kreisfrequenz

Änderungsrate des Phasenwinkels

Die Kreisfrequenz ist eine physikalische Größe als Maß dafür, wie schnell eine Schwingung abläuft. Im Gegensatz zur Frequenz gibt sie aber nicht die Anzahl der Schwingungsperioden bezogen auf eine Zeitspanne an, sondern den überstrichenen Phasenwinkel der Schwingung pro Zeitspanne. Als Formelzeichen wird der griechische Buchstabe (kleines Omega) verwendet. Da eine Schwingungsperiode einem Phasenwinkel von entspricht, unterscheidet sich die Kreisfrequenz von der Frequenz durch einen Faktor :

Physikalische Größe
Name Kreisfrequenz[1]
Formelzeichen
Abgeleitet von Frequenz
Größen- und
Einheitensystem
Einheit Dimension
SI s−1, rad s−1 [2][3][4] T−1
Der Winkel, der aus dem Kreis­umfang die Länge des Kreis­radius heraus­schnei­det, beträgt 1 Radiant. Der Voll­winkel beträgt also Radiant.
,

wobei die Periodendauer der Schwingung ist. Die Einheit der Kreisfrequenz ist oder , wobei ist. Anders als die Frequenz wird die Kreisfrequenz nicht in Hertz angegeben.

Zeigermodell

Bearbeiten
 
Zeigerdarstellung einer harmonischen Schwingung in der komplexen Ebene (am Beispiel einer Wechselspannung  ) mit dem zeitabhängigen Argument  .

Harmonische Schwingungen lassen sich durch die Rotation eines Zeigers darstellen, dessen Länge der Amplitude der Schwingung entspricht. Die Momentanauslenkung ist dabei die Projektion des Zeigers auf eine der Koordinatenachsen. Wenn man für die Darstellung des Zeigers die komplexe Zahlenebene verwendet, entspricht – je nach Definition – entweder der Realteil oder der Imaginärteil der Momentanauslenkung.

Die Kreisfrequenz   ist die Änderungsrate des Phasenwinkels   des rotierenden Zeigers (siehe nebenstehendes Bild).[5] In Anpassung an die Einheit der Kreisfrequenz sollte der Winkel hierbei in der Einheit Radiant angegeben werden.

 

Das Zeigermodell ist auf alle Arten von Schwingungen (mechanisch, elektrisch etc.) und Signalen anwendbar. Da eine Schwingungsperiode einer vollen Umdrehung des Zeigers entspricht und der Vollwinkel   beträgt, ist die Kreisfrequenz einer harmonischen Schwingung immer das  -fache ihrer Frequenz. Häufig wird die Angabe der Kreisfrequenz gegenüber der Frequenz bevorzugt, da viele Formeln der Schwingungslehre sich aufgrund des Auftretens trigonometrischer Funktionen, deren Periode per Definition   ist, mit Hilfe der Kreisfrequenz kompakter darstellen lassen: z. B. bei einer einfachen Cosinus-Schwingung:   statt  .

Im Falle zeitlich nicht konstanter Kreisfrequenzen wird auch der Begriff momentane Kreisfrequenz verwendet.

Verwendung in der Schwingungslehre

Bearbeiten

Eine harmonische Schwingung lässt sich allgemein als Funktion der Kreisfrequenz   beschreiben:

 

Sie kann, wie in der Elektrotechnik üblich, durch den Real- und Imaginärteil eines mit konstanter Winkelgeschwindigkeit rotierenden komplexen Zeigers   in der gaußschen Zahlenebene als Funktion der Kreisfrequenz und der Zeit dargestellt werden.[6] Der zeitabhängige Winkel   des komplexen Zeigers wird dabei als Phasenwinkel bezeichnet.

 

Der Zusammenhang mit Sinus und Kosinus ergibt sich aus der Eulerschen Formel.

Kennkreisfrequenz und Eigenkreisfrequenz

Bearbeiten

Schwingfähige Systeme werden durch die Kennkreisfrequenz und die Eigenkreisfrequenz beschrieben. Ein ungedämpftes frei schwingendes System schwingt mit seiner Kennkreisfrequenz  , ein gedämpftes System ohne äußere Anregung schwingt mit seiner Eigenkreisfrequenz  . Die Eigenkreisfrequenz eines gedämpften Systems ist stets kleiner als die Kennkreisfrequenz. Die Kennkreisfrequenz wird in der Mechanik auch als ungedämpfte Eigenkreisfrequenz bezeichnet.

Für das Beispiel eines elektrischen Schwingkreises gilt mit dem Widerstand  , der Induktivität   und der Kapazität   für die Kennkreisfrequenz:

 

Für ein Federpendel mit der Federsteifigkeit   und der Masse   gilt für die Kennkreisfrequenz:

 

und mit der Abklingkonstante   bzw.   für die Eigenkreisfrequenz:

 .

Weitere Beispiele siehe Torsionspendel, Wasserpendel, Fadenpendel.

Komplexe Kreisfrequenz

Bearbeiten

Aus der komplexen Zeigerdarstellung einer harmonischen Schwingung

 

ergibt sich mit dem üblichen Ansatz

 

die Verallgemeinerung zur komplexen Kreisfrequenz   mit dem Realteil   und der Kreisfrequenz  . Durch die komplexe Kreisfrequenz   kann nicht nur eine konstante harmonische Schwingung mit   dargestellt werden, sondern auch eine gedämpfte Schwingung mit   und eine angeregte Schwingung mit  .[7] Eine klassische Anwendung der komplexen Kreisfrequenz ist die erweiterte symbolische Methode der Wechselstromtechnik.

Eine gedämpfte Schwingung kann wie folgt mit der konstanten komplexen Kreisfrequenz s als komplexer Zeiger dargestellt werden:

 

Dabei ist   die Eigenkreisfrequenz des schwingfähigen Systems und   ist gleich dem negativen Wert der Abklingkonstante:   (siehe dazu den vorhergehenden Abschnitt).

Bei der Laplacetransformation hat die komplexe Kreisfrequenz   eine allgemeinere Bedeutung als Variable im Bildbereich der Transformation   zur Darstellung beliebiger Zeitfunktionen und Übertragungsfunktionen in der komplexen Frequenzebene („s-Ebene“).

Beziehung zur Winkelgeschwindigkeit

Bearbeiten

Häufig wird der Begriff „Kreisfrequenz“ durch eine mechanische Analogie eingeführt: Wenn man einen Punkt eines rotierenden Körpers (oder einen rotierenden Zeiger) senkrecht zur Drehachse auf eine Ebene projiziert, erhält man die Abbildung einer harmonischen (sinusförmigen) Schwingung. Die Kreisfrequenz der Schwingung, die sich aus dieser Projektion ergibt, hat dabei denselben Zahlenwert wie die Winkelgeschwindigkeit des rotierenden Körpers.[8] Diese Projektion ist jedoch lediglich die mechanische Veranschaulichung eines abstrakten Konzepts: Harmonische (d. h. sinusförmige) Schwingungen werden in der komplexen Ebene durch die Rotation eines komplexen Zeigers dargestellt. Durch diese Abstraktion ist der Begriff Kreisfrequenz auf Schwingungen jeder Art (elektrisch, mechanisch etc.) anwendbar und hat keinen direkten Bezug zu rotierenden Körpern. Die Kreisfrequenz beschreibt die abstrakte Änderungsrate des Phasenwinkels in der komplexen Ebene, während die Winkelgeschwindigkeit die Änderung eines physikalischen Winkels an einem physikalischen Körper pro Änderung der Zeit beschreibt.

Bearbeiten
Wiktionary: Kreisfrequenz – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

Bearbeiten
  1. IEV – Internationales Elektrotechnisches Wörterbuch [1]; IEV-Nummer 103-07-03.
  2. DIN EN ISO 80000-3:2021: Größen und Einheiten – Teil 3: Raum und Zeit (ISO 80000-3:2019; Deutsche Fassung), Nr. 3−18.
  3. SI-Broschüre [2], 9. Auflage (2019, aktualisiert 2024), Abschnitt 2.3.4.
  4. Leonhard Stiny: Grundwissen Elektrotechnik und Elektronik: Eine leicht verständliche Einführung. 7. Auflage, Springer Vieweg, 2018, S. 243.
  5. Eberhard Brommundt, Delf Sachau: Schwingungslehre: mit Maschinendynamik. Springer, 2007 (eingeschränkte Vorschau in der Google-Buchsuche).
  6. Die harmonische Schwingung, mathe online
  7. Wolf-Ewald Büttner: Grundlagen der Elektrotechnik, Band 2. 2. Auflage. Oldenbourg, 2009, ISBN 978-3-486-58981-8, S. 215 (eingeschränkte Vorschau in der Google-Buchsuche).
  8. Manfred Precht, Karl Voit, Roland Kraft: Mathematik 2 für Nichtmathematiker. Oldenbourg Verlag, 2005, ISBN 3-486-57775-1, S. 69 (eingeschränkte Vorschau in der Google-Buchsuche).
    Douglas C. Giancoli: Physik: Gymnasiale Oberstufe. Pearson Deutschland GmbH, 2010, ISBN 3-86894-903-8, S. 170 (eingeschränkte Vorschau in der Google-Buchsuche).
    Jürgen Eichler: Physik: für das Ingenieurstudium – prägnant mit knapp 300 Beispielaufgaben. Springer DE, 2011, ISBN 3-8348-9942-9, S. 112 (eingeschränkte Vorschau in der Google-Buchsuche).
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy