Eine raumfüllende Kurve (englisch space-filling curve) ist eine Linie in der Analysis, die eine zweidimensionale Fläche oder einen mehrdimensionalen Raum (beziehungsweise das regelmäßige Gitter, das diese/n Fläche/Raum beschreibt) komplett (surjektiv) durchläuft. Eine solche Kurve kann nicht zugleich bijektiv und stetig sein, da sonst das Einheitsintervall und das Einheitsquadrat die gleiche Dimension hätten (Satz von der Invarianz der Dimension).

Das Standardbeispiel: die Hilbert-Kurve

Das Akronym FASS-Kurve steht für „space-filling, self-avoiding, simple and self-similar“ (raumfüllend, selbst-ausweichend, einfach und selbstähnlich). FASS-Kurven sind raumfüllend.

Raumfüllende Kurven müssen aber nicht selbst-ausweichend sein, sie können sich auch selbst überkreuzen; sie müssen auch nicht selbstähnlich sein, so die βΩ-Kurve von Jens-Michael Wierum.[1][Anm 1]

Beispiele für raumfüllende Kurven sind:

Anmerkungen

Bearbeiten
  1. Sie ist eine Quadranten-basierte, „face-continuous“ (Zellen-stetige), „facet-gated“ (Zellen-verbundene), aber nicht selbst-ähnliche geschlossene 2-dimensionale raumfüllende Kurve (s. H. Haverkort, 2016).

Einzelnachweise

Bearbeiten
  1. J.-M. Wierum. Definition of a new circular space-filling curve: βΩ-indexing. Technical Report TR-001-02, Paderborn Center for Parallel Computing (PC2) (2002)

Literatur

Bearbeiten
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy