Satz von Hurwitz (Zahlentheorie)

mathematischer Satz

Die Mathematik kennt eine Anzahl von Sätzen, welche mit dem Namen von Adolf Hurwitz verknüpft sind. Der Satz von Hurwitz der Zahlentheorie betrifft die sogenannte diophantische Approximation irrationaler Zahlen, also die Approximation irrationaler Zahlen durch Bruchzahlen. Der Satz gibt eine Obergrenze für die Güte der Approximation an.

Der Satz

Bearbeiten

Der Satz lässt sich formulieren wie folgt:[1]

Für jede irrationale Zahl   existieren unendlich viele voll gekürzte Brüche  , welche

 

erfüllen.

Im von Scheid[2] entwickelten Beweis des Satzes werden in entscheidender Weise Eigenschaften der Farey-Folgen genutzt.

Güte der Obergrenze

Bearbeiten

Die Konstante   ist scharf, also im Allgemeinen nicht zu ersetzen durch eine bessere Konstante. Dies lässt sich nachweisen anhand der irrationalen Zahl   (bekannt im Zusammenhang mit dem Goldenen Schnitt).[3]

Für eine einzelne Zahl   kann es bessere Approximationen geben, z. B. für Liouville-Zahlen. Ist   eine algebraische Zahl, lässt sich der Exponent von   nach dem Satz von Thue-Siegel-Roth aber nicht verbessern.

Verwandte Ergebnisse

Bearbeiten

Literatur

Bearbeiten

Einzelnachweise

Bearbeiten
  1. Harald Scheid: Zahlentheorie. 3. Auflage. Spektrum Akademischer Verlag, Heidelberg (u. a.) 2003, ISBN 3-8274-1365-6, S. 64.
  2. Harald Scheid: Zahlentheorie. 3. Auflage. Spektrum Akademischer Verlag, Heidelberg (u. a.) 2003, ISBN 3-8274-1365-6, S. 64–65.
  3. Harald Scheid: Zahlentheorie. 3. Auflage. Spektrum Akademischer Verlag, Heidelberg (u. a.) 2003, ISBN 3-8274-1365-6, S. 65.
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy