Shortcuts

Source code for torch.random

# mypy: allow-untyped-defs
import contextlib
import warnings
from collections.abc import Generator

import torch
from torch._C import default_generator


[docs]def set_rng_state(new_state: torch.Tensor) -> None: r"""Sets the random number generator state. .. note:: This function only works for CPU. For CUDA, please use :func:`torch.manual_seed`, which works for both CPU and CUDA. Args: new_state (torch.ByteTensor): The desired state """ default_generator.set_state(new_state)
[docs]def get_rng_state() -> torch.Tensor: r"""Returns the random number generator state as a `torch.ByteTensor`. .. note:: The returned state is for the default generator on CPU only. See also: :func:`torch.random.fork_rng`. """ return default_generator.get_state()
[docs]def manual_seed(seed) -> torch._C.Generator: r"""Sets the seed for generating random numbers on all devices. Returns a `torch.Generator` object. Args: seed (int): The desired seed. Value must be within the inclusive range `[-0x8000_0000_0000_0000, 0xffff_ffff_ffff_ffff]`. Otherwise, a RuntimeError is raised. Negative inputs are remapped to positive values with the formula `0xffff_ffff_ffff_ffff + seed`. """ seed = int(seed) import torch.cuda if not torch.cuda._is_in_bad_fork(): torch.cuda.manual_seed_all(seed) import torch.mps if not torch.mps._is_in_bad_fork(): torch.mps.manual_seed(seed) import torch.xpu if not torch.xpu._is_in_bad_fork(): torch.xpu.manual_seed_all(seed) _seed_custom_device(seed) return default_generator.manual_seed(seed)
[docs]def seed() -> int: r"""Sets the seed for generating random numbers to a non-deterministic random number on all devices. Returns a 64 bit number used to seed the RNG. """ seed = default_generator.seed() import torch.cuda if not torch.cuda._is_in_bad_fork(): torch.cuda.manual_seed_all(seed) import torch.mps if not torch.mps._is_in_bad_fork(): torch.mps.manual_seed(seed) import torch.xpu if not torch.xpu._is_in_bad_fork(): torch.xpu.manual_seed_all(seed) _seed_custom_device(seed) return seed
def _seed_custom_device(seed) -> None: r"""Sets the seed to generate random numbers for custom device. Args: seed (int): The desired seed. See [Note: support the custom device with privateuse1] """ seed = int(seed) custom_backend_name = torch._C._get_privateuse1_backend_name() if hasattr(torch, custom_backend_name): custom_device_mod = getattr(torch, custom_backend_name) _bad_fork_name = "_is_in_bad_fork" _seed_all_name = "manual_seed_all" if hasattr(custom_device_mod, _bad_fork_name) and hasattr( custom_device_mod, _seed_all_name ): if not getattr(custom_device_mod, _bad_fork_name)(): getattr(custom_device_mod, _seed_all_name)(seed) else: message = f"Set seed for `{custom_backend_name}` device does not take effect, please add API's " message += f"`{_bad_fork_name}` and `{_seed_all_name}` to `{custom_backend_name}` device module." warnings.warn(message, UserWarning, stacklevel=3)
[docs]def initial_seed() -> int: r"""Returns the initial seed for generating random numbers as a Python `long`. .. note:: The returned seed is for the default generator on CPU only. """ return default_generator.initial_seed()
_fork_rng_warned_already = False
[docs]@contextlib.contextmanager def fork_rng( devices=None, enabled=True, _caller="fork_rng", _devices_kw="devices", device_type="cuda", ) -> Generator: """ Forks the RNG, so that when you return, the RNG is reset to the state that it was previously in. Args: devices (iterable of Device IDs): devices for which to fork the RNG. CPU RNG state is always forked. By default, :meth:`fork_rng` operates on all devices, but will emit a warning if your machine has a lot of devices, since this function will run very slowly in that case. If you explicitly specify devices, this warning will be suppressed enabled (bool): if ``False``, the RNG is not forked. This is a convenience argument for easily disabling the context manager without having to delete it and unindent your Python code under it. device_type (str): device type str, default is `cuda`. As for custom device, see details in [Note: support the custom device with privateuse1] """ if device_type == "meta": yield return device_type = torch.device(device_type).type device_mod = getattr(torch, device_type, None) if device_mod is None: raise RuntimeError( f"torch has no module of `{device_type}`, you should register " + "a module by `torch._register_device_module`." ) global _fork_rng_warned_already # Internal arguments: # _caller: the function which called fork_rng, which the user used # _devices_kw: the devices keyword of _caller if not enabled: yield return if devices is None: num_devices = device_mod.device_count() if num_devices > 1 and not _fork_rng_warned_already: message = ( f"{device_type.upper()} reports that you have {num_devices} available devices, and " f"you have used {_caller} without explicitly specifying which devices are being used. " f"For safety, we initialize *every* {device_type.upper()} device by default, which can " f"be quite slow if you have a lot of {device_type.upper()}s. If you know that you are only" f" making use of a few {device_type.upper()} devices, set the environment variable " f"{device_type.upper()}_VISIBLE_DEVICES or the '{_devices_kw}' keyword argument of {_caller} " "with the set of devices you are actually using. For example, if you are using CPU only, " "set device.upper()_VISIBLE_DEVICES= or devices=[]; if you are using device 0 only, " f"set {device_type.upper()}_VISIBLE_DEVICES=0 or devices=[0]. To initialize all devices " f"and suppress this warning, set the '{_devices_kw}' keyword argument to " f"`range(torch.{device_type}.device_count())`." ) warnings.warn(message) _fork_rng_warned_already = True devices = list(range(num_devices)) else: # Protect against user passing us a generator; we need to traverse this # multiple times but a generator will be exhausted upon first traversal devices = list(devices) cpu_rng_state = torch.get_rng_state() device_rng_states = [device_mod.get_rng_state(device) for device in devices] try: yield finally: torch.set_rng_state(cpu_rng_state) for device, device_rng_state in zip(devices, device_rng_states): device_mod.set_rng_state(device_rng_state, device)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy