Shortcuts

torch.cuda.cudart

torch.cuda.cudart()[source][source]

Retrieves the CUDA runtime API module.

This function initializes the CUDA runtime environment if it is not already initialized and returns the CUDA runtime API module (_cudart). The CUDA runtime API module provides access to various CUDA runtime functions.

Parameters

None

Returns

The CUDA runtime API module (_cudart).

Return type

module

Raises
  • RuntimeError – If CUDA cannot be re-initialized in a forked subprocess.

  • AssertionError – If PyTorch is not compiled with CUDA support or if libcudart functions are unavailable.

Example of CUDA operations with profiling:
>>> import torch
>>> from torch.cuda import cudart, check_error
>>> import os
>>>
>>> os.environ['CUDA_PROFILE'] = '1'
>>>
>>> def perform_cuda_operations_with_streams():
>>>     stream = torch.cuda.Stream()
>>>     with torch.cuda.stream(stream):
>>>         x = torch.randn(100, 100, device='cuda')
>>>         y = torch.randn(100, 100, device='cuda')
>>>         z = torch.mul(x, y)
>>>     return z
>>>
>>> torch.cuda.synchronize()
>>> print("====== Start nsys profiling ======")
>>> check_error(cudart().cudaProfilerStart())
>>> with torch.autograd.profiler.emit_nvtx():
>>>     result = perform_cuda_operations_with_streams()
>>>     print("CUDA operations completed.")
>>> check_error(torch.cuda.cudart().cudaProfilerStop())
>>> print("====== End nsys profiling ======")
To run this example and save the profiling information, execute:
>>> $ nvprof --profile-from-start off --csv --print-summary -o trace_name.prof -f -- python cudart_test.py

This command profiles the CUDA operations in the provided script and saves the profiling information to a file named trace_name.prof. The –profile-from-start off option ensures that profiling starts only after the cudaProfilerStart call in the script. The –csv and –print-summary options format the profiling output as a CSV file and print a summary, respectively. The -o option specifies the output file name, and the -f option forces the overwrite of the output file if it already exists.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy