Shortcuts

torch.diag

torch.diag(input, diagonal=0, *, out=None) Tensor
  • If input is a vector (1-D tensor), then returns a 2-D square tensor with the elements of input as the diagonal.

  • If input is a matrix (2-D tensor), then returns a 1-D tensor with the diagonal elements of input.

The argument diagonal controls which diagonal to consider:

  • If diagonal = 0, it is the main diagonal.

  • If diagonal > 0, it is above the main diagonal.

  • If diagonal < 0, it is below the main diagonal.

Parameters
  • input (Tensor) – the input tensor.

  • diagonal (int, optional) – the diagonal to consider

Keyword Arguments

out (Tensor, optional) – the output tensor.

See also

torch.diagonal() always returns the diagonal of its input.

torch.diagflat() always constructs a tensor with diagonal elements specified by the input.

Examples:

Get the square matrix where the input vector is the diagonal:

>>> a = torch.randn(3)
>>> a
tensor([ 0.5950,-0.0872, 2.3298])
>>> torch.diag(a)
tensor([[ 0.5950, 0.0000, 0.0000],
        [ 0.0000,-0.0872, 0.0000],
        [ 0.0000, 0.0000, 2.3298]])
>>> torch.diag(a, 1)
tensor([[ 0.0000, 0.5950, 0.0000, 0.0000],
        [ 0.0000, 0.0000,-0.0872, 0.0000],
        [ 0.0000, 0.0000, 0.0000, 2.3298],
        [ 0.0000, 0.0000, 0.0000, 0.0000]])

Get the k-th diagonal of a given matrix:

>>> a = torch.randn(3, 3)
>>> a
tensor([[-0.4264, 0.0255,-0.1064],
        [ 0.8795,-0.2429, 0.1374],
        [ 0.1029,-0.6482,-1.6300]])
>>> torch.diag(a, 0)
tensor([-0.4264,-0.2429,-1.6300])
>>> torch.diag(a, 1)
tensor([ 0.0255, 0.1374])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy