Shortcuts

torch.fmax

torch.fmax(input, other, *, out=None) Tensor

Computes the element-wise maximum of input and other.

This is like torch.maximum() except it handles NaNs differently: if exactly one of the two elements being compared is a NaN then the non-NaN element is taken as the maximum. Only if both elements are NaN is NaN propagated.

This function is a wrapper around C++’s std::fmax and is similar to NumPy’s fmax function.

Supports broadcasting to a common shape, type promotion, and integer and floating-point inputs.

Parameters
  • input (Tensor) – the input tensor.

  • other (Tensor) – the second input tensor

Keyword Arguments

out (Tensor, optional) – the output tensor.

Example:

>>> a = torch.tensor([9.7, float('nan'), 3.1, float('nan')])
>>> b = torch.tensor([-2.2, 0.5, float('nan'), float('nan')])
>>> torch.fmax(a, b)
tensor([9.7000, 0.5000, 3.1000,    nan])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy