Shortcuts

torch.kaiser_window

torch.kaiser_window(window_length, periodic=True, beta=12.0, *, dtype=None, layout=torch.strided, device=None, requires_grad=False) Tensor

Computes the Kaiser window with window length window_length and shape parameter beta.

Let I_0 be the zeroth order modified Bessel function of the first kind (see torch.i0()) and N = L - 1 if periodic is False and L if periodic is True, where L is the window_length. This function computes:

outi=I0(β1(iN/2N/2)2)/I0(β)out_i = I_0 \left( \beta \sqrt{1 - \left( {\frac{i - N/2}{N/2}} \right) ^2 } \right) / I_0( \beta )

Calling torch.kaiser_window(L, B, periodic=True) is equivalent to calling torch.kaiser_window(L + 1, B, periodic=False)[:-1]). The periodic argument is intended as a helpful shorthand to produce a periodic window as input to functions like torch.stft().

Note

If window_length is one, then the returned window is a single element tensor containing a one.

Parameters
  • window_length (int) – length of the window.

  • periodic (bool, optional) – If True, returns a periodic window suitable for use in spectral analysis. If False, returns a symmetric window suitable for use in filter design.

  • beta (float, optional) – shape parameter for the window.

Keyword Arguments
  • dtype (torch.dtype, optional) – the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_dtype()).

  • layout (torch.layout, optional) – the desired layout of returned window tensor. Only torch.strided (dense layout) is supported.

  • device (torch.device, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_device()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

  • requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy