Shortcuts

torch.linalg.cross

torch.linalg.cross(input, other, *, dim=-1, out=None) Tensor

Computes the cross product of two 3-dimensional vectors.

Supports input of float, double, cfloat and cdouble dtypes. Also supports batches of vectors, for which it computes the product along the dimension dim. It broadcasts over the batch dimensions.

Parameters
  • input (Tensor) – the first input tensor.

  • other (Tensor) – the second input tensor.

  • dim (int, optional) – the dimension along which to take the cross-product. Default: -1.

Keyword Arguments

out (Tensor, optional) – the output tensor. Ignored if None. Default: None.

Example

>>> a = torch.randn(4, 3)
>>> a
tensor([[-0.3956,  1.1455,  1.6895],
        [-0.5849,  1.3672,  0.3599],
        [-1.1626,  0.7180, -0.0521],
        [-0.1339,  0.9902, -2.0225]])
>>> b = torch.randn(4, 3)
>>> b
tensor([[-0.0257, -1.4725, -1.2251],
        [-1.1479, -0.7005, -1.9757],
        [-1.3904,  0.3726, -1.1836],
        [-0.9688, -0.7153,  0.2159]])
>>> torch.linalg.cross(a, b)
tensor([[ 1.0844, -0.5281,  0.6120],
        [-2.4490, -1.5687,  1.9792],
        [-0.8304, -1.3037,  0.5650],
        [-1.2329,  1.9883,  1.0551]])
>>> a = torch.randn(1, 3)  # a is broadcast to match shape of b
>>> a
tensor([[-0.9941, -0.5132,  0.5681]])
>>> torch.linalg.cross(a, b)
tensor([[ 1.4653, -1.2325,  1.4507],
        [ 1.4119, -2.6163,  0.1073],
        [ 0.3957, -1.9666, -1.0840],
        [ 0.2956, -0.3357,  0.2139]])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy