Shortcuts

torch.linalg.vander

torch.linalg.vander(x, N=None) Tensor

Generates a Vandermonde matrix.

Returns the Vandermonde matrix VV

V=(1x1x12x1N11x2x22x2N11x3x32x3N11xnxn2xnN1).V = \begin{pmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{N-1}\\ 1 & x_2 & x_2^2 & \dots & x_2^{N-1}\\ 1 & x_3 & x_3^2 & \dots & x_3^{N-1}\\ \vdots & \vdots & \vdots & \ddots &\vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{N-1} \end{pmatrix}.

for N > 1. If N= None, then N = x.size(-1) so that the output is a square matrix.

Supports inputs of float, double, cfloat, cdouble, and integral dtypes. Also supports batches of vectors, and if x is a batch of vectors then the output has the same batch dimensions.

Differences with numpy.vander:

  • Unlike numpy.vander, this function returns the powers of x in ascending order. To get them in the reverse order call linalg.vander(x, N).flip(-1).

Parameters

x (Tensor) – tensor of shape (*, n) where * is zero or more batch dimensions consisting of vectors.

Keyword Arguments

N (int, optional) – Number of columns in the output. Default: x.size(-1)

Example:

>>> x = torch.tensor([1, 2, 3, 5])
>>> linalg.vander(x)
tensor([[  1,   1,   1,   1],
        [  1,   2,   4,   8],
        [  1,   3,   9,  27],
        [  1,   5,  25, 125]])
>>> linalg.vander(x, N=3)
tensor([[ 1,  1,  1],
        [ 1,  2,  4],
        [ 1,  3,  9],
        [ 1,  5, 25]])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy