Shortcuts

RNNCell

class torch.nn.RNNCell(input_size, hidden_size, bias=True, nonlinearity='tanh', device=None, dtype=None)[source][source]

An Elman RNN cell with tanh or ReLU non-linearity.

h=tanh(Wihx+bih+Whhh+bhh)h' = \tanh(W_{ih} x + b_{ih} + W_{hh} h + b_{hh})

If nonlinearity is ‘relu’, then ReLU is used in place of tanh.

Parameters
  • input_size (int) – The number of expected features in the input x

  • hidden_size (int) – The number of features in the hidden state h

  • bias (bool) – If False, then the layer does not use bias weights b_ih and b_hh. Default: True

  • nonlinearity (str) – The non-linearity to use. Can be either 'tanh' or 'relu'. Default: 'tanh'

Inputs: input, hidden
  • input: tensor containing input features

  • hidden: tensor containing the initial hidden state Defaults to zero if not provided.

Outputs: h’
  • h’ of shape (batch, hidden_size): tensor containing the next hidden state for each element in the batch

Shape:
  • input: (N,Hin)(N, H_{in}) or (Hin)(H_{in}) tensor containing input features where HinH_{in} = input_size.

  • hidden: (N,Hout)(N, H_{out}) or (Hout)(H_{out}) tensor containing the initial hidden state where HoutH_{out} = hidden_size. Defaults to zero if not provided.

  • output: (N,Hout)(N, H_{out}) or (Hout)(H_{out}) tensor containing the next hidden state.

Variables
  • weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape (hidden_size, input_size)

  • weight_hh (torch.Tensor) – the learnable hidden-hidden weights, of shape (hidden_size, hidden_size)

  • bias_ih – the learnable input-hidden bias, of shape (hidden_size)

  • bias_hh – the learnable hidden-hidden bias, of shape (hidden_size)

Note

All the weights and biases are initialized from U(k,k)\mathcal{U}(-\sqrt{k}, \sqrt{k}) where k=1hidden_sizek = \frac{1}{\text{hidden\_size}}

Examples:

>>> rnn = nn.RNNCell(10, 20)
>>> input = torch.randn(6, 3, 10)
>>> hx = torch.randn(3, 20)
>>> output = []
>>> for i in range(6):
...     hx = rnn(input[i], hx)
...     output.append(hx)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy