Shortcuts

Softmin

class torch.nn.Softmin(dim=None)[source][source]

Applies the Softmin function to an n-dimensional input Tensor.

Rescales them so that the elements of the n-dimensional output Tensor lie in the range [0, 1] and sum to 1.

Softmin is defined as:

Softmin(xi)=exp(xi)jexp(xj)\text{Softmin}(x_{i}) = \frac{\exp(-x_i)}{\sum_j \exp(-x_j)}
Shape:
  • Input: ()(*) where * means, any number of additional dimensions

  • Output: ()(*), same shape as the input

Parameters

dim (int) – A dimension along which Softmin will be computed (so every slice along dim will sum to 1).

Returns

a Tensor of the same dimension and shape as the input, with values in the range [0, 1]

Return type

None

Examples:

>>> m = nn.Softmin(dim=1)
>>> input = torch.randn(2, 3)
>>> output = m(input)

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy