Shortcuts

torch.rand_like

torch.rand_like(input, *, dtype=None, layout=None, device=None, requires_grad=False, memory_format=torch.preserve_format) Tensor

Returns a tensor with the same size as input that is filled with random numbers from a uniform distribution on the interval [0,1)[0, 1). torch.rand_like(input) is equivalent to torch.rand(input.size(), dtype=input.dtype, layout=input.layout, device=input.device).

Parameters

input (Tensor) – the size of input will determine size of the output tensor.

Keyword Arguments
  • dtype (torch.dtype, optional) – the desired data type of returned Tensor. Default: if None, defaults to the dtype of input.

  • layout (torch.layout, optional) – the desired layout of returned tensor. Default: if None, defaults to the layout of input.

  • device (torch.device, optional) – the desired device of returned tensor. Default: if None, defaults to the device of input.

  • requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.

  • memory_format (torch.memory_format, optional) – the desired memory format of returned Tensor. Default: torch.preserve_format.

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy