Shortcuts

torch.range

torch.range(start=0, end, step=1, *, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) Tensor

Returns a 1-D tensor of size endstartstep+1\left\lfloor \frac{\text{end} - \text{start}}{\text{step}} \right\rfloor + 1 with values from start to end with step step. Step is the gap between two values in the tensor.

outi+1=outi+step.\text{out}_{i+1} = \text{out}_i + \text{step}.

Warning

This function is deprecated and will be removed in a future release because its behavior is inconsistent with Python’s range builtin. Instead, use torch.arange(), which produces values in [start, end).

Parameters
  • start (float, optional) – the starting value for the set of points. Default: 0.

  • end (float) – the ending value for the set of points

  • step (float, optional) – the gap between each pair of adjacent points. Default: 1.

Keyword Arguments
  • out (Tensor, optional) – the output tensor.

  • dtype (torch.dtype, optional) – the desired data type of returned tensor. Default: if None, uses a global default (see torch.set_default_dtype()). If dtype is not given, infer the data type from the other input arguments. If any of start, end, or step are floating-point, the dtype is inferred to be the default dtype, see get_default_dtype(). Otherwise, the dtype is inferred to be torch.int64.

  • layout (torch.layout, optional) – the desired layout of returned Tensor. Default: torch.strided.

  • device (torch.device, optional) – the desired device of returned tensor. Default: if None, uses the current device for the default tensor type (see torch.set_default_device()). device will be the CPU for CPU tensor types and the current CUDA device for CUDA tensor types.

  • requires_grad (bool, optional) – If autograd should record operations on the returned tensor. Default: False.

Example:

>>> torch.range(1, 4)
tensor([ 1.,  2.,  3.,  4.])
>>> torch.range(1, 4, 0.5)
tensor([ 1.0000,  1.5000,  2.0000,  2.5000,  3.0000,  3.5000,  4.0000])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy