Shortcuts

torch.sparse.sum

torch.sparse.sum(input, dim=None, dtype=None)[source][source]

Return the sum of each row of the given sparse tensor.

Returns the sum of each row of the sparse tensor input in the given dimensions dim. If dim is a list of dimensions, reduce over all of them. When sum over all sparse_dim, this method returns a dense tensor instead of a sparse tensor.

All summed dim are squeezed (see torch.squeeze()), resulting an output tensor having dim fewer dimensions than input.

During backward, only gradients at nnz locations of input will propagate back. Note that the gradients of input is coalesced.

Parameters
  • input (Tensor) – the input sparse tensor

  • dim (int or tuple of ints) – a dimension or a list of dimensions to reduce. Default: reduce over all dims.

  • dtype (torch.dtype, optional) – the desired data type of returned Tensor. Default: dtype of input.

Return type

Tensor

Example:

>>> nnz = 3
>>> dims = [5, 5, 2, 3]
>>> I = torch.cat([torch.randint(0, dims[0], size=(nnz,)),
                   torch.randint(0, dims[1], size=(nnz,))], 0).reshape(2, nnz)
>>> V = torch.randn(nnz, dims[2], dims[3])
>>> size = torch.Size(dims)
>>> S = torch.sparse_coo_tensor(I, V, size)
>>> S
tensor(indices=tensor([[2, 0, 3],
                       [2, 4, 1]]),
       values=tensor([[[-0.6438, -1.6467,  1.4004],
                       [ 0.3411,  0.0918, -0.2312]],

                      [[ 0.5348,  0.0634, -2.0494],
                       [-0.7125, -1.0646,  2.1844]],

                      [[ 0.1276,  0.1874, -0.6334],
                       [-1.9682, -0.5340,  0.7483]]]),
       size=(5, 5, 2, 3), nnz=3, layout=torch.sparse_coo)

# when sum over only part of sparse_dims, return a sparse tensor
>>> torch.sparse.sum(S, [1, 3])
tensor(indices=tensor([[0, 2, 3]]),
       values=tensor([[-1.4512,  0.4073],
                      [-0.8901,  0.2017],
                      [-0.3183, -1.7539]]),
       size=(5, 2), nnz=3, layout=torch.sparse_coo)

# when sum over all sparse dim, return a dense tensor
# with summed dims squeezed
>>> torch.sparse.sum(S, [0, 1, 3])
tensor([-2.6596, -1.1450])

Docs

Access comprehensive developer documentation for PyTorch

View Docs

Tutorials

Get in-depth tutorials for beginners and advanced developers

View Tutorials

Resources

Find development resources and get your questions answered

View Resources
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy