Skip to main content

A Game-Theoretic Approach to Pairwise Clustering and Matching

  • Chapter
Similarity-Based Pattern Analysis and Recognition

Abstract

Clustering refers to the process of extracting maximally coherent groups from a set of objects using pairwise, or high-order, similarities. Traditional approaches to this problem are based on the idea of partitioning the input data into a predetermined number of classes, thereby obtaining the clusters as a by-product of the partitioning process. In this chapter, we provide a brief review of our recent work which offers a radically different view of the problem and allows one to work directly on non-(geo)metric data. In contrast to the classical approach, in fact, we attempt to provide a meaningful formalization of the very notion of a cluster in the presence of non-metric (even asymmetric and/or negative) (dis)similarities and show that game theory offers an attractive and unexplored perspective that serves well our purpose. To this end, we formulate the clustering problem in terms of a non-cooperative “clustering game” and show that a natural notion of a cluster turns out to be equivalent to a classical (evolutionary) game-theoretic equilibrium concept. Besides the game-theoretic perspective, we exhibit also characterizations of our cluster notion in terms of optimization theory and graph theory. As for the algorithmic issues, we describe two approaches to find equilibria of a clustering game. The first one is based on the classical replicator dynamics from evolutionary game theory, the second one is a novel class of dynamics inspired by infection and immunization processes which overcome their limitations. Finally, we show applications of the proposed framework to matching problems, where we aim at finding correspondences within a set of elements. In particular, we address the problems of point-pattern matching and surface registration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We note that although we restrict ourselves to games where all players share the same set of pure strategies and payoff function, in more general settings each agent can well be associated to its own pure strategy set and payoff function.

  2. 2.

    In the original paper, Motzkin and Straus proved the “only-if” part of this theorem. The converse, however, is a straightforward consequence of their result [40].

References

  1. Ackerman, M., Ben-David, S.: Measures of clustering quality: a working set of axioms for clustering. In: Advances in Neural Inform. Process. Syst. (NIPS) (2008)

    Google Scholar 

  2. Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust surface registration. ACM Trans. Graph. 27(3), 1–10 (2008)

    Article  Google Scholar 

  3. Albarelli, A., Torsello, A., Rota Bulò, S., Pelillo, M.: Matching as a non-cooperative game. In: Int. Conf. Comp. Vision (ICCV) (2009)

    Google Scholar 

  4. Almohamad, H.A., Duffuaa, S.O.: A linear programming approach for the weighted graph matching problem. IEEE Trans. Pattern Anal. Mach. Intell. 15(5), 522–525 (1993)

    Article  Google Scholar 

  5. Altschul, S.F., Gish, W., Miller, W., Meyers, E.W., Lipman, D.J.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)

    Google Scholar 

  6. Barrow, H., Burstall, R.M.: Subgraph isomorphism, matching relational structures and maximal cliques. Inf. Process. Lett. 4(4), 83–84 (1976)

    Article  MATH  Google Scholar 

  7. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  8. Bomze, I.M.: Evolution towards the maximum clique. J. Glob. Optim. 10(2), 143–164 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bomze, I.M.: On standard quadratic problems. J. Glob. Optim. 13(4), 369–387 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bomze, I.M., Pötscher, B.M.: Game Theoretical Foundations of Evolutionary Stability. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  11. Bomze, I.M., Weibull, J.W.: Does neutral stability imply Lyapunov stability? Games Econ. Behav. 11, 173–192 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Calana, Y.P., Cheplygina, V., Duin, R.P.W., Reyes, E.B.G., Orozco-Alzate, M., Tax, D.M.J., Loog, M.: On the informativeness of asymmetric dissimilarities. In: Hancock, E.R., Pelillo, M. (eds.) SIMBAD. Lecture Notes in Computer Science, vol. 7953, pp. 75–89. Springer, Berlin (2013)

    Google Scholar 

  13. Chen, C.S., Hung, Y.P., Cheng, J.B.: RANSAC-based DARCES: a new approach to fast automatic registration of partially overlapping range images. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1229–1234 (1999)

    Article  Google Scholar 

  14. Chum, O., Matas, J.: Matching with PROSAC—progressive sample consensus. In: CVPR, pp. 220–226. IEEE Comput. Soc., Washington (2005)

    Google Scholar 

  15. Chung, D.H., Yun, I.D., Lee, S.U.: Registration of multiple-range views using the reverse-calibration technique. Pattern Recognit. 31(4), 457–464 (1998)

    Article  Google Scholar 

  16. Crammer, K., Talukdar, P.P., Pereira, F.: A rate-distortion one-class model and its applications to clustering. In: Int. Conf. on Mach. Learning (ICML) (2008)

    Google Scholar 

  17. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proc. 23rd ACM Annual Conf. on Computer Graphics and Interactive Techniques—SIGGRAPH’96, pp. 303–312 (1996)

    Chapter  Google Scholar 

  18. Dubuisson, M.P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Int. Conf. Patt. Recogn. (ICPR), pp. 566–568 (1994)

    Chapter  Google Scholar 

  19. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965). www.cs.berkeley.edu/~christos/classics/edmonds.ps

    Article  MathSciNet  MATH  Google Scholar 

  20. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  21. Fudenberg, D., Tirole, J.: Game Theory. MIT Press, Cambridge (1991)

    Google Scholar 

  22. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. Int. J. Comput. Vis. 61(1), 103–112 (2005)

    Article  Google Scholar 

  23. Gupta, G., Ghosh, J.: Robust one-class clustering using hybrid global and local search. In: Int. Conf. on Mach. Learning (ICML) (2005)

    Google Scholar 

  24. Herault, L., Horaud, R.: Figure-ground discrimination: a combinatorial optimization approach. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 899–914 (1993)

    Article  Google Scholar 

  25. Ho, J., Ming-Hsuan, Y., Jongwoo, L., Kuang-Chih, L., Kriegman, D.: Clustering appearances of objects under varying illumination conditions. In: IEEE Conf. Computer Vision and Patt. Recogn. (CVPR), vol. 1, pp. 11–18 (2003)

    Google Scholar 

  26. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  27. Jacobs, D.W., Weinshall, D., Gdalyahu, Y.: Classification with nonmetric distances. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 583–600 (2000)

    Article  Google Scholar 

  28. Jain, A.K., Dubes, R.C.: Algorithms for Data Clustering. Prentice Hall, New York (1988)

    MATH  Google Scholar 

  29. Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 433–449 (1999)

    Article  Google Scholar 

  30. Kim, J., Kolmogorov, V., Zabih, R.: Visual correspondence using energy minimization and mutual information. In: IEEE Int. Conf. Computer Vision, pp. 1033–1040 (2003)

    Google Scholar 

  31. Kleinberg, J.M.: An impossibility theorem for clustering. In: Advances in Neural Inform. Process. Syst. (NIPS) (2002)

    Google Scholar 

  32. Krishnamurthy, V., Levoy, M.: Fitting smooth surfaces to dense polygon meshes. In: Proc. of SIGGRAPH, vol. 96, pp. 313–324 (1996)

    Google Scholar 

  33. Lowe, D.: Distinctive image features from scale-invariant keypoints. In: International Journal of Computer Vision, vol. 20, pp. 91–110 (2003)

    Google Scholar 

  34. Luenberger, D.G.: Linear and Nonlinear Programming. Addison-Wesley, Reading (1984)

    MATH  Google Scholar 

  35. Maynard Smith, J.: Evolution and the Theory of Games. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  36. Motzkin, T.S., Straus, E.G.: Maxima for graphs and a new proof of a theorem of Turán. Can. J. Math. 17, 533–540 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pardalos, P.M., Phillips, A.T.: A global optimization approach for solving the maximum clique problem. Int. J. Comput. Math. 33, 209–216 (1990)

    Article  MATH  Google Scholar 

  38. Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007)

    Article  Google Scholar 

  39. Pelillo, M.: Replicator equations, maximal cliques, and graph isomorphism. Neural Comput. 11(8), 1933–1955 (1999)

    Article  Google Scholar 

  40. Pelillo, M., Jagota, A.: Feasible and infeasible maxima in a quadratic program for maximum clique. J. Artif. Neural Netw. 2, 411–420 (1995)

    Google Scholar 

  41. Pelillo, M., Siddiqi, K., Zucker, S.W.: Matching hierarchical structures using association graphs. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1105–1120 (1999)

    Article  Google Scholar 

  42. Rota Bulò, S., Bomze, I.M.: Infection and immunization: a new class of evolutionary game dynamics. Games Econ. Behav. 71, 193–211 (2011)

    Article  MATH  Google Scholar 

  43. Rota Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. In: Advances in Neural Inform. Process. Syst. (NIPS), vol. 22, pp. 1571–1579 (2009)

    Google Scholar 

  44. Rota Bulò, S., Pelillo, M.: A game-theoretic approach to hypergraph clustering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1312–1327 (2013)

    Article  Google Scholar 

  45. Rota Bulò, S., Pelillo, M., Bomze, I.M.: Graph-based quadratic optimization: a fast evolutionary approach. Comput. Vis. Image Underst. 115, 984–995 (2011)

    Article  Google Scholar 

  46. Roth, V., Laub, J., Kawanabe, M., Buhmann, J.M.: Optimal cluster preserving embedding of nonmetric proximity data. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1540–1551 (2003)

    Article  Google Scholar 

  47. Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: Proc. of the Third Intl. Conf. on 3D Digital Imaging and Modeling, pp. 145–152 (2001)

    Chapter  Google Scholar 

  48. Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image registration methods with accuracy evaluation. Image Vis. Comput. 25(5), 578–596 (2007)

    Article  Google Scholar 

  49. Shashua, A., Ullman, S.: Structural saliency: The detection of globally salient features using a locally connected network. In: Int. Conf. Comp. Vision (ICCV) (1988)

    Google Scholar 

  50. Tarel, J.P., Civi, H., Cooper, D.B.: Pose estimation of free-form 3d objects without point matching using algebraic surface models. In: Proceedings of IEEE Workshop Model Based 3D Image Analysis, pp. 13–21 (1998)

    Google Scholar 

  51. Torsello, A., Hancock, E.R.: Computing approximate tree edit distance using relaxation labeling. Pattern Recognit. Lett. 24, 1089–1097 (2003)

    Article  MATH  Google Scholar 

  52. Torsello, A., Rota Bulò, S., Pelillo, M.: Grouping with asymmetric affinities: a game-theoretic perspective. In: IEEE Conf. Computer Vision and Patt. Recogn. (CVPR), pp. 292–299 (2006)

    Google Scholar 

  53. Torsello, A., Rota Bulò, S., Pelillo, M.: Beyond partitions: Allowing overlapping groups in pairwise clustering. In: Int. Conf. Patt. Recogn. (ICPR) (2008)

    Google Scholar 

  54. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proc. 21st ACM Annual Conf. on Computer Graphics and Interactive Techniques—SIGGRAPH’94, pp. 311–318 (1994)

    Chapter  Google Scholar 

  55. Umeyama, S.: An eigendecomposition approach to weighted graph matching problems. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 695–703 (1988)

    Article  MATH  Google Scholar 

  56. Weibull, J.: Evolutionary Game Theory. MIT Press, Cambridge (1995)

    MATH  Google Scholar 

  57. Weibull, J.W.: Evolutionary Game Theory. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  58. Williams, J.W., Thornber, K.K.: A comparison of measures for detecting natural shapes in cluttered backgrounds. Int. J. Comput. Vis. (2000)

    Google Scholar 

  59. Yu, S., Shi, J.: Grouping with directed relationships. In: Energy Minim. Methods in Computer Vision and Patt. Recogn, pp. 283–297 (2001)

    Chapter  Google Scholar 

  60. Zadeh, R.B., Ben-David, S.: A uniqueness theorem for clustering. In: Uncertainty in Artif. Intell (2009)

    Google Scholar 

  61. Zaharescu, A., Boyer, E., Varanasi, K., Horaud, R.P.: Surface feature detection and description with applications to mesh matching. In: Proc. of the IEEE Conf. on Comput. Vis. and Pattern Recognit. Miami Beach, Florida (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Pelillo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Pelillo, M., Rota Bulò, S., Torsello, A., Albarelli, A., Rodolà, E. (2013). A Game-Theoretic Approach to Pairwise Clustering and Matching. In: Pelillo, M. (eds) Similarity-Based Pattern Analysis and Recognition. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-5628-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-5628-4_8

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-5627-7

  • Online ISBN: 978-1-4471-5628-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy