Abstract
Author profiling, dating back to the earliest attempts at of analyzing quantitative text documents, is an extensivel-studied problem among NLP researchers. Because of its utility in crime, marketing and business. In this paper, three deep learning methods were evaluated for author profiling using tweets in Arabic language. The first method is based on a Convolutional Neural Network (CNN) model, while the second and third technique belongs to the family of Recurrent Neural Networks (RNN). The appropriate choice of some parameters, such as the number of amount of filters, training epochs, batch size, dropout and learning rate of Adam optimizer used in a RNN model is crucial in obtaining reliable results. The experimental findings of our comparative evaluation study demonstrate that GRU model outperforms LSTM and CNN models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ayadi, R., Maraoui, M., Zrigui, M.: Intertextual distance for Arabic texts classification. In: International Conference for Internet Technology and Secured Transactions, ICITST 2009, pp. 1–6. IEEE, November 2009
Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case, C., Chen, J.: Deep speech 2: end-to-end speech recognition in English and Mandarin. In: International Conference on Machine Learning, pp. 173–182, June 2016
Bsir, B., Zrigui, M.: Bidirectional LSTM for author gender identification. In: Nguyen, N., Pimenidis, E., Khan, Z., Trawiński, B. (eds.) Computational Collective Intelligence, ICCCI 2018. Lecture Notes in Computer Science, vol. 11055. Springer, Cham (2018)
Bsir, B., Zrigui, M.: Enhancing deep learning gender identification with gated recurrent units architecture in social text. Computación y Sistemas 22(3), 2018 (2018)
Clauset, A., Moore, C., Newman, M.E.: Hierarchical structure and the prediction of missing links in networks. Nature 453(7191), 98 (2008)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Howard, J., Ruder, S.: Finetuned language models for text classification. CoRR, abs/1801.06146 (2018)
Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)
Kodiyan, D., et al.: Author profiling with bidirectional RNNs using attention with GRUs: notebook for PAN at CLEF 2017. In: CLEF 2017 Evaluation Labs and Workshop–Working Notes Papers, Dublin, Ireland, 11–14 September 2017 (2017)
Werlen, L.M.: Statistical learning methods for profiling analysis. In: Proceedings of CLEF 2015 Evaluation Labs (2015)
Mahmoud, A., Zrigui, M.: Semantic similarity analysis for paraphrase identification in Arabic texts. In: Proceedings of the 31st Pacific Asia Conference on Language, Information and Computation, pp. 274–281 (2017)
Maraoui, M., Antoniadis, G., Zrigui, M.: Un système de génération automatique de dictionnaires étiquetés de l’arabe. CITALA 2007(18–19), 2007 (2007)
Miao, Y., Yu, L., Blunsom, P.: Neural variational inference for text processing. In: International Conference on Machine Learning, pp. 1727–1736, June 2016
Rangel, F., Rosso, P., Montes-y-Gómez, M., Potthast, M., Stein, B.: Overview of the 6th author profiling task at pan 2018: multimodal gender identification in Twitter. Working Notes Papers of the CLEF (2018)
Ruder, S., Ghaffari, P., Breslin, J.G.: Character-level and multi-channel convolutional neural networks for large-scale authorship attribution. arXiv preprint arXiv:1609.06686 (2016)
Sap, M., Park, G., Eichstaedt, J., Kern, M., Stillwell, D., Kosinski, M., Ungar, L., Schwartz, H.A.: Developing age and gender predictive lexica over social media. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1146–1151 (2014)
Schaetti, N., Savoy, J.: Comparison of neural models for gender profiling (2018)
Malmasi, S., et al.: Discriminating between similar languages and arabic dialect identification: a report on the third DSL shared task. VarDial 3 (2016)
Socher, R., Perelygin, A., Wu, J., Chuang, J., Manning, C.D., Ng, A., Potts, C.: Recursive deep models for semantic compositionality over a sentiment treebank. In: Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing, pp. 1631–1642 (2013)
Stamatatos, E., Rangel, F., Tschuggnall, M., Stein, B., Kestemont, M., Rosso, P., Potthast, M.: Overview of PAN 2018. In: International Conference of the Cross-Language Evaluation Forum for European Languages, pp. 267–285. Springer, Cham, September 2018
Stout, L., Musters, R., Pool, C.: Author profiling based on text and images. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the Ninth International Conference of the CLEF Association (CLEF 2018), September 2018
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)
Veenhoven, R., Snijders, S., van der Hall, D., van Noord, R.: Using translated data to improve deep learning author profiling models. In: Experimental IR Meets Multilinguality, Multimodality, and Interaction. Proceedings of the Ninth International Conference of the CLEF Association (CLEF 2018), September 2018
Zhu, X., Sobihani, P., Guo, H.: Long short-term memory over recursive structures. In: International Conference on Machine Learning, pp. 1604–1612, June 2015
Zrigui, M., Ayadi, R., Mars, M., Maraoui, M.: Arabic text classification framework based on latent dirichlet allocation. J. Comput. Inf. Technol. 20(2), 125–140 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bassem, B., Zrigui, M. (2020). Gender Identification: A Comparative Study of Deep Learning Architectures. In: Abraham, A., Cherukuri, A., Melin, P., Gandhi, N. (eds) Intelligent Systems Design and Applications. ISDA 2018 2018. Advances in Intelligent Systems and Computing, vol 941. Springer, Cham. https://doi.org/10.1007/978-3-030-16660-1_77
Download citation
DOI: https://doi.org/10.1007/978-3-030-16660-1_77
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-16659-5
Online ISBN: 978-3-030-16660-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)