Abstract
The Luby-Rackoff construction, or the Feistel construction, is one of the most important approaches to construct secure block ciphers from secure pseudorandom functions. The 3- and 4-round Luby-Rackoff constructions are proven to be secure against chosen-plaintext attacks (CPAs) and chosen-ciphertext attacks (CCAs), respectively, in the classical setting. However, Kuwakado and Morii showed that a quantum superposed chosen-plaintext attack (qCPA) can distinguish the 3-round Luby-Rackoff construction from a random permutation in polynomial time. In addition, Ito et al. recently showed a quantum superposed chosen-ciphertext attack (qCCA) that distinguishes the 4-round Luby-Rackoff construction. Since Kuwakado and Morii showed the result, a problem of much interest has been how many rounds are sufficient to achieve provable security against quantum query attacks. This paper answers to this fundamental question by showing that 4-rounds suffice against qCPAs. Concretely, we prove that the 4-round Luby-Rackoff construction is secure up to \(O(2^{n/12})\) quantum queries. We also give a query upper bound for the problem of distinguishing the 4-round Luby-Rackoff construction from a random permutation by showing a distinguishing qCPA with \(O(2^{n/6})\) quantum queries. Our result is the first to demonstrate the security of a typical block-cipher construction against quantum query attacks, without any algebraic assumptions. To give security proofs, we use an alternative formalization of Zhandry’s compressed oracle technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Strictly speaking, the attack by Kuwakado and Morii works only when all round functions are keyed permutations. Kaplan et al. [18] showed that the attack works for more general cases.
- 2.
Note that the condition in which the round function of the sponge construction is one-way is unusual in the context of classical symmetric-key provable security.
- 3.
Here we do not mean that our model captures all reasonable stateful quantum oracles. We use our model of stateful quantum oracles just for intermediate arguments to prove our main results, and the claims of the main results are described in the typical model of stateless oracles.
- 4.
Note that the Hadamard operator \(H^{\otimes n}\) corresponds to the Fourier transformation over the group \(\left( \mathbb {Z} / 2 \mathbb {Z} \right) ^{\oplus n}\).
- 5.
Note that this three-step procedure is a quoted verbatim from the original paper [37] of version 20180814:183812, except that the symbol \(y'\) and 0 are used instead of \(\alpha _x\) and \(0^n\), respectively, in the original procedure.
- 6.
- 7.
See Section H in this paper’s full version [14] for the reason that closing the gap is important.
References
Alagic, G., Russell, A.: Quantum-secure symmetric-key cryptography based on hidden shifts. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 65–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_3
Anand, M.V., Targhi, E.E., Tabia, G.N., Unruh, D.: Post-quantum security of the CBC, CFB, OFB, CTR, and XTS modes of operation. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 44–63. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_4
Aoki, K., et al.: Camellia: a 128-bit block cipher suitable for multiple platforms — design and analysis. In: Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 39–56. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44983-3_4
Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random Oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3
Boneh, D., Zhandry, M.: Quantum-secure message authentication codes. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 592–608. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_35
Bonnetain, X.: Quantum key-recovery on full AEZ. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719, pp. 394–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-9_20
Bonnetain, X., Naya-Plasencia, M.: Hidden shift quantum cryptanalysis and implications. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 560–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_19
Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: On quantum slide attacks, Appeared at SAC (2019)
Czajkowski, J., Groot Bruinderink, L., Hülsing, A., Schaffner, C., Unruh, D.: Post-quantum security of the sponge construction. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 185–204. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_9
Czajkowski, J., Majenz, C., Schaffner, C., Zur, S.: Quantum lazy sampling and game-playing proofs for quantum indifferentiability. IACR Cryptology ePrint Archive 2019, p. 428 (2019)
Dong, X., Dong, B., Wang, X.: Quantum attacks on some Feistel block ciphers. IACR Cryptology ePrint Archive, Report 2018/504 (2018)
Dong, X., Li, Z., Wang, X.: Quantum cryptanalysis on some generalized Feistel schemes. Sci. China Inf. Sci. 62(2), 22501:1–22501:12 (2019)
Dong, X., Wang, X.: Quantum key-recovery attack on Feistel structures. Sci. China Inf. Sci. 61(10), 102501:1–102501:7 (2018)
Hosoyamada, A., Iwata, T.: 4-Round Luby-Rackoff Construction is a qPRP. IACR Cryptology ePrint Archive, Report 2019/243 (2019)
Hosoyamada, A., Sasaki, Y.: Quantum Demiric-Selçuk meet-in-the-middle attacks: applications to 6-round generic Feistel constructions. In: Catalano, D., De Prisco, R. (eds.) SCN 2018. LNCS, vol. 11035, pp. 386–403. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98113-0_21
Hosoyamada, A., Yasuda, K.: Building quantum-one-way functions from block ciphers: Davies-Meyer and Merkle-Damgård constructions. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11272, pp. 275–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03326-2_10
Ito, G., Hosoyamada, A., Matsumoto, R., Sasaki, Y., Iwata, T.: Quantum chosen-ciphertext attacks against Feistel ciphers. In: Matsui, M. (ed.) CT-RSA 2019. LNCS, vol. 11405, pp. 391–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12612-4_20
Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8
Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. American Mathematical Society, Boston (2002)
Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In: ISIT 2010, Proceedings, pp. 2682–2685. IEEE (2010)
Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher. In: ISITA 2012, Proceedings, pp. 312–316. IEEE (2012)
Liu, Q., Zhandry, M.: On finding quantum multi-collisions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 189–218. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_7
Luby, M., Rackoff, C.: How to construct pseudo-random permutations from pseudo-random functions (abstract). In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 447–447. Springer, Heidelberg (1986). https://doi.org/10.1007/3-540-39799-X_34
Mennink, B., Szepieniec, A.: XOR of PRPs in a quantum world. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 367–383. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_21
National Bureau of Standards: Data encryption standard. FIPS 46, January 1977
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information: 10th Anniversary Edition (2010)
NIST: Announcing request for nominations for public-key post-quantum cryptographic algorithms. National Institute of Standards and Technology (2016)
Patarin, J.: New results on pseudorandom permutation generators based on the des scheme. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 301–312. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_25
Santoli, T., Schaffner, C.: Using Simon’s algorithm to attack symmetric-key cryptographic primitives. Quantum Inf. Comput. 17(1&2), 65–78 (2017)
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: FOCS 1994, Proceedings, pp. 124–134. IEEE (1994)
Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)
Song, F., Yun, A.: Quantum security of NMAC and related constructions - PRF domain extension against quantum attacks. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 283–309. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_10
Zhandry, M.: How to construct quantum random functions. In: FOCS 2012, Proceedings, pp. 679–687. IEEE (2012)
Zhandry, M.: Secure identity-based encryption in the quantum random oracle model. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 758–775. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_44
Zhandry, M.: A note on the quantum collision and set equality problems. Quantum Inf. Comput. 15(7&8), 557–567 (2015)
Zhandry, M.: A note on quantum-secure PRPs. IACR Cryptology ePrint Archive 2016, p. 1076 (2016)
Zhandry, M.: How to record quantum queries, and applications to quantum indifferentiability. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part II. LNCS, vol. 11693, pp. 239–268. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_9
Acknowledgments
The authors thank Qipeng Liu and anonymous reviewers for pointing out an issue of Proposition 5 in a previous version of this paper.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 International Association for Cryptologic Research
About this paper
Cite this paper
Hosoyamada, A., Iwata, T. (2019). 4-Round Luby-Rackoff Construction is a qPRP. In: Galbraith, S., Moriai, S. (eds) Advances in Cryptology – ASIACRYPT 2019. ASIACRYPT 2019. Lecture Notes in Computer Science(), vol 11921. Springer, Cham. https://doi.org/10.1007/978-3-030-34578-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-34578-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34577-8
Online ISBN: 978-3-030-34578-5
eBook Packages: Computer ScienceComputer Science (R0)