Skip to main content

An Explainable By-Design Framework for Transparent User-Centric AI Energy Services

  • Conference paper
  • First Online:
Artificial Intelligence Applications and Innovations. AIAI 2024 IFIP WG 12.5 International Workshops (AIAI 2024)

Abstract

This paper explores Explainable Artificial Intelligence (XAI) in the energy sector, highlighting its importance for enhancing transparency, user adoption and engagement. It introduces a User-Centric Explainable By-Design Framework for AI services, aimed at overcoming the “black-box” challenges of AI models by prioritizing explainability and user interaction throughout the AI development process. The framework addresses the deployment of AI in applications such as predictive maintenance, anomaly detection, and photovoltaic (PV) forecasting, emphasizing the need for clear, understandable AI decisions to foster user trust and promote sustainable energy practices. By advocating for a systematic incorporation of XAI principles from data collection to model training and user feedback, the framework seeks to enhance the effectiveness and user experience of AI in the energy sector, supporting a transition towards more efficient and environmentally friendly energy systems. In general, the proposed framework provides a structured approach to achieving these goals, while future research and development in this area should focus on refining and testing the framework across various applications of the energy sector, from smart grids and renewable energy systems to energy efficiency services in residential and commercial buildings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Digitalisation of the energy system, European Commission Action Plan. https://energy.ec.europa.eu/topics/energy-systems-integration/digitalisation-energy-system_en

  2. Mellit, A., Kalogirou, S.A.: Artificial intelligence techniques for photovoltaic applications: a review. Progr. Energy Combust. Sci. 34(5), 574–632 (2008). ISSN 0360-1285

    Google Scholar 

  3. Szczepaniuk, H., Szczepaniuk, E.K.: Applications of artificial intelligence algorithms in the energy sector. Energies 16, 347 (2023)

    Article  Google Scholar 

  4. Hernandez-Matheus, A., et al.: A systematic review of machine learning techniques related to local energy communities. Renew. Sustain. Energy Rev. 170, 112651 (2022). ISSN 1364-0321

    Google Scholar 

  5. Singh, A.K., Ibraheem, Khatoon, S., Muazzam, M., Chaturvedi, D.K.: Load forecasting techniques and methodologies: a review. In: 2012 2nd International Conference on Power, Control and Embedded Systems (2012)

    Google Scholar 

  6. Patel, R., Patel, M.R., Patel, R.V.: A review: introduction and understanding of load forecasting. J. Appl. Sci. Comput 4(4), 1449–1457 (2019)

    Google Scholar 

  7. Das, U.K., et al.: Forecasting of photovoltaic power generation and model optimization: a review. Renew. Sustain. Energy Rev. 81(P1), 912–928 (2018)

    Article  Google Scholar 

  8. Nassif, A.B., Talib, M.A., Nasir, Q., Dakalbab, F.M.: Machine learning for anomaly detection: a systematic review. IEEE Access 9, 78658–78700 (2021)

    Article  Google Scholar 

  9. Himeur, Y., Ghanem, K., Alsalemi, A., Bensaali, F., Amira, A.: Artificial intelligence based anomaly detection of energy consumption in buildings: a review, current trends and new perspectives. Appl. Energy 287, 116601 (2021). ISSN 0306-2619

    Google Scholar 

  10. Branco, P., Gonçalves, F., Costa, A.C.: Tailored algorithms for anomaly detection in photovoltaic systems. Energies 13, 225 (2020)

    Article  Google Scholar 

  11. Angelis, G.-F., Timplalexis, C., Krinidis, S., Ioannidis, D., Tzovaras, D.: NILM applications: literature review of learning approaches, recent developments and challenges. Energy Build. 261, 111951 (2022). ISSN 0378-7788

    Article  Google Scholar 

  12. Carvalho, T.P., Soares, F.A.A.M.N., Vita, R., Francisco, R.daP., Basto, Alcalá, S.G.S.: A systematic literature review of machine learning methods applied to predictive maintenance. Comput. Ind. Eng. 137, 106024 (2019). ISSN 0360-8352

    Google Scholar 

  13. Himeur, Y., et al.: A survey of recommender systems for energy efficiency in buildings: Principles, challenges and prospects. Inf. Fusion 72, 1–21 (2021). ISSN 1566-2535

    Article  Google Scholar 

  14. Portugal, I., Alencar, P., Cowan, D.: The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst. Appl. 97, 205–227 (2018). ISSN 0957-4174

    Article  Google Scholar 

  15. Rai, A.: Explainable AI: from black box to glass box. J. Acad. Mark. Sci. 48, 137–141 (2019)

    Article  Google Scholar 

  16. Ochmann, J., Zilker, S., Laumer, S.: The evaluation of the black box problem for AI-based recommendations: an interview-based study. In: Ahlemann, F., Schütte, R., Stieglitz, S. (eds.) WI 2021. LNISO, vol. 47, pp. 232–246. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86797-3_16

    Chapter  Google Scholar 

  17. Gerlings, J., Shollo, A., Constantiou, I.: Reviewing the need for explainable artificial intelligence (xAI). arXiv preprint arXiv:2012.01007 (2020)

  18. Wanner, J., Herm, L.V., Heinrich, K., Janiesch, C., Zschech, P.: White, grey, black: effects of XAI augmentation on the confidence in AI-based decision support systems. In: ICIS, September 2020

    Google Scholar 

  19. Speith, T.: A review of taxonomies of explainable artificial intelligence (XAI) methods. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT 2022), pp. 2239–2250. Association for Computing Machinery, New York (2022)

    Google Scholar 

  20. Yaprakdal, F., Arısoy, M.: A multivariate time series analysis of electrical load forecasting based on a hybrid feature selection approach and explainable deep learning. Appl. Sci. 13, 12946 (2023)

    Article  Google Scholar 

  21. Moon, J., Rho, S., Baik, S.W.: Toward explainable electrical load forecasting of buildings: a comparative study of tree-based ensemble methods with Shapley values. Sustain. Energy Technol. Assess. 54, 102888 (2022). ISSN 2213-1388

    Google Scholar 

  22. Gürses-Tran, G., Körner, T.A., Monti, A.: Introducing explainability in sequence-to-sequence learning for short-term load forecasting. Electric Power Syst. Res. 212, 108366 (2022). ISSN 0378-7796

    Google Scholar 

  23. Chakraborty, D., Alam, A., Chaudhuri, S., Başağaoğlu, H., Sulbaran, T., Langar, S.: Scenario-based prediction of climate change impacts on building cooling energy consumption with explainable artificial intelligence. Appl. Energy 291, 116807 (2021). ISSN 0306-2619

    Google Scholar 

  24. Kuzlu, M., Cali, U., Sharma, V., Güler, Ö.: Gaining insight into solar photovoltaic power generation forecasting utilizing explainable artificial intelligence tools. IEEE Access 8, 187814–187823 (2020)

    Article  Google Scholar 

  25. Sarp, S., Kuzlu, M., Cali, U., Elma, O., Güler, Ö.: An interpretable solar photovoltaic power generation forecasting approach using an explainable artificial intelligence tool (2021)

    Google Scholar 

  26. Shukla, V., Sant, A., Sharma, P., Nayak, M., Khatri, H.: An explainable artificial intelligence based approach for the prediction of key performance indicators for 1 megawatt solar plant under local steppe climate conditions. Eng. Appl. Artif. Intell. 131, 107809 (2024). ISSN 0952-1976

    Google Scholar 

  27. Utama, C., Meske, C., Schneider, J., Schlatmann, R., Ulbrich, C.: Explainable artificial intelligence for photovoltaic fault detection: a comparison of instruments. Solar Energy 249, 139–151 (2023). ISSN 0038-092X

    Google Scholar 

  28. Hwang, C., Lee, T.: E-SFD: explainable sensor fault detection in the ICS anomaly detection system. IEEE Access 9, 140470–140486 (2021)

    Article  Google Scholar 

  29. Huang, Z., Wu, Y., Tempini, N., Lin, H., Yin, H.: An energy-efficient and trustworthy unsupervised anomaly detection framework (EATU) for IIoT. ACM Trans. Sen. Netw. 18(4) (2022). Article 56, 18 pages

    Google Scholar 

  30. Batic, D., Stankovic, V., Stankovic, L.: Towards transparent load disaggregation - a framework for quantitative evaluation of explainability using explainable AI. IEEE Trans. Consum. Electron. 70, 4345–4356 (2023)

    Article  Google Scholar 

  31. Machlev, R., Malka, A., Perl, M., Levron, Y., Belikov, J.: Explaining the decisions of deep learning models for load disaggregation (NILM) based on XAI. In: IEEE Power & Energy Society General Meeting (PESGM), Denver, CO, USA, pp. 1–5 (2022)

    Google Scholar 

  32. Mollel, R.S., Stankovic, L., Stankovic, V.: Using explainability tools to inform NILM algorithm performance: a decision tree approach. In: 9th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys 2022), pp. 368–372. Association for Computing Machinery, New York (2022)

    Google Scholar 

  33. Matzka, S.: Explainable artificial intelligence for predictive maintenance applications. In: 2020 Third International Conference on Artificial Intelligence for Industries (AI4I), Irvine, CA, USA, pp. 69–74 (2020)

    Google Scholar 

  34. Krishnamurthy, V., Nezafati, K., Stayton, E., Singh, V.: Explainable AI framework for imaging-based predictive maintenance for automotive applications and beyond. Data-Enabled Discov. Appl. 4 (2020)

    Google Scholar 

  35. Sardianos, C., Varlamis, I., Chronis, C., et al.: The emergence of explainability of intelligent systems: delivering explainable and personalised recommendations for energy efficiency. Int. J. Intell. Syst. 36, 656–680 (2021)

    Article  Google Scholar 

  36. Panagoulias, D.P., Sarmas, E., Marinakis, V., Virvou, M., Tsihrintzis, G.A., Doukas, H.: Intelligent decision support for energy management: a methodology for tailored explainability of artificial intelligence analytics. Electronics 12, 4430 (2023)

    Article  Google Scholar 

  37. d’Aquin, M., Troullinou, P., O’Connor, N., Cullen, A., Faller, G., Holden, L.: Towards an “Ethics by Design” Methodology for AI Research Projects, pp. 54–59 (2018)

    Google Scholar 

  38. Jin, W., Fan, J., Gromala, D., Pasquier, P., Hamarneh, G.: EUCA: a practical prototyping framework towards end-user-centered explainable artificial intelligence (2021)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the DATA CELLAR project, funded by Horizon Europe under Grant Agreement No. 101069694. Views and opinions expressed are those of the authors only and do not necessarily reflect those of the European Union or granting authority. Neither the European Union nor the granting authority can be held responsible for them.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Tzouvaras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tzouvaras, C., Dimara, A., Anagnostopoulos, CN., Krinidis, S. (2024). An Explainable By-Design Framework for Transparent User-Centric AI Energy Services. In: Maglogiannis, I., Iliadis, L., Karydis, I., Papaleonidas, A., Chochliouros, I. (eds) Artificial Intelligence Applications and Innovations. AIAI 2024 IFIP WG 12.5 International Workshops. AIAI 2024. IFIP Advances in Information and Communication Technology, vol 715. Springer, Cham. https://doi.org/10.1007/978-3-031-63227-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-63227-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-63226-6

  • Online ISBN: 978-3-031-63227-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy