Skip to main content

Solving Bi-objective Unconstrained Binary Quadratic Programming Problem with Multi-objective Backbone Guided Search Algorithm

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9772))

Included in the following conference series:

  • 1916 Accesses

Abstract

This paper presents a multi-objective backbone guided search algorithm in order to optimize a bi-objective unconstrained binary quadratic programming problem. Our proposed algorithm consists of two main procedures which are hypervolume-based local search and backbone guided search. When the hypervolume-based local search procedure can not improve the Pareto approximation set any more, the backbone guided search procedure is applied for further improvements. Experimental results show that the proposed algorithm is very effective compared with the original multi-objective optimization algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.tik.ee.ethz.ch/pisa/assessment.html.

References

  1. Alidaee, B., Kochenberger, G.A., Ahmadian, A.: 0-1 quadratic programming approach for the optimal solution of two scheduling problems. Int. J. Syst. Sci. 25, 401–408 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alkhamis, T.M., Hasan, M., Ahmed, M.A.: Simulated annealing for the unconstrained binary quadratic pseudo-boolean function. Eur. J. Oper. Res. 108, 641–652 (1998)

    Article  MATH  Google Scholar 

  3. Amini, M., Alidaee, B., Kochenberger, G.: A scatter search approach to unconstrained quadratic binary programs. In: Cone, D., Dorigo, M., Glover, F. (eds.) New Methods in Optimization, pp. 317–330. McGraw-Hill, New York (1999)

    Google Scholar 

  4. Basseur, M., Zeng, R.-Q., Hao, J.-K.: Hypervolume-based multi-objective local search. Neural Comput. Appl. 21(8), 1917–1929 (2012)

    Article  Google Scholar 

  5. Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-objective Problems (Genetic and Evolutionary Computation). Springer, New York (2006)

    MATH  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2000)

    Article  Google Scholar 

  7. Gallo, G., Hammer, P., Simeone, B.: Quadratic knapsack problems. Math. Program. 12, 132–149 (1980)

    MathSciNet  MATH  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. Freeman, New York, USA (1978)

    MATH  Google Scholar 

  9. Glover, F., Kochenberger, G., Alidaee, B.: Adaptive memory tabu search for binary quadratic programs. Manage. Sci. 44, 336–345 (1998)

    Article  MATH  Google Scholar 

  10. Kochenberger, G., Hao, J.-K., Glover, F., Lewis, M., Lü, Z., Wang, H., Wang, Y.: The unconstrained binary quadratic programming problem: a survey. J. Comb. Optim. 28, 58–81 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Krarup, J., Pruzan, A.: Computer aided layout design. Math. Program. Study 9, 75–94 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liefooghe, A., Verel, S., Hao, J.-K.: A hybrid metaheuristic for multiobjective unconstrained binary quadratic programming. Appl. Soft Comput. 16, 10–19 (2014)

    Article  Google Scholar 

  13. Liefooghe, A., Verel, S., Paquete, L., Hao, J.-K.: Experiments on local search for bi-objective unconstrained binary quadratic programming. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9018, pp. 171–186. Springer, Heidelberg (2015)

    Google Scholar 

  14. Lü, Z., Glover, F., Hao, J.-K.: A hybrid metaheuristic approach to solving the UBQP problem. Eur. J. Oper. Res. 207, 1254–1262 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Merz, P., Freisleben, B.: Genetic algorithms for binary quadratic programming. In: Proceedings of the 1st International Conference on Genetic and Evolutionary Computation Conference (GECCO 1999), Orlando, Florida, USA, pp. 417–424 (1999)

    Google Scholar 

  16. Merz, P., Katayama, K.: Memetic algorithms for the unconstrained binary quadratic programming problem. Biosystems 78, 99–118 (2004)

    Article  Google Scholar 

  17. Wang, Y., Lü, Z., Glover, F., Hao, J.-K.: Path relinking for unconstrained binary quadratic programming. Eur. J. Oper. Res. 223, 595–604 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, Y., Lü, Z.P., Glover, F., Hao, J.K.: Backbone guided tabu search for solving the UBQP problem. J. Heuristics 19, 679–695 (2013)

    Article  Google Scholar 

  19. Wilbaut, C., Salhi, S., Hanafi, S.: An iterative variable-based fixation heuristic for the 0-1 multidimensional knapsack problem. Eur. J. Oper. Res. 199(2), 339–348 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang, W.: Configuration landscape analysis and backbone guided local search. Part 1: satisfiability and maximum satisfiability. Artif. Intell. 158, 1–26 (2004)

    Article  MATH  Google Scholar 

  21. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  22. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: improving the strength Pareto evolutionary algorithm for multiobjective optimization. TIK Report 103, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, Zurich, Switzerland (2001)

    Google Scholar 

  23. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. Evol. Comput. 3, 257–271 (1999)

    Article  Google Scholar 

Download references

Acknowledgment

The work in this paper was supported by the Fundamental Research Funds for the Central Universities (Grant No. A0920502051408-25), supported by the Research Foundation for International Young Scientists of China (Grant No. 61450110443), supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars (Grant Nos. 2015S03007), supported by National Natural Science Foundation of China (Grant No. 61370150, 61433014 and 71501157) and supported by West Light Foundation of Chinese Academy of Science (Grant No: Y4C0011001). The authors would like to thank the anonymous referees for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-Qiang Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Xue, LY., Zeng, RQ., Wang, Y., Shang, MS. (2016). Solving Bi-objective Unconstrained Binary Quadratic Programming Problem with Multi-objective Backbone Guided Search Algorithm. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9772. Springer, Cham. https://doi.org/10.1007/978-3-319-42294-7_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42294-7_66

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42293-0

  • Online ISBN: 978-3-319-42294-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy