Abstract
Based on the traditional K-means clustering algorithm, a new semi-supervised K-means clustering algorithm (MMK-means) is proposed in this paper, in which use semi-supervised learning method to solve the problem of clustering on multi-relational data set. In order to improve the quality of clustering results, the algorithm making full use of the various relationships between objects and attributes to guide the choice of the marked data, and use these relationships to the initial center of clusters. Experimental results on Financial Data database verify the accuracy and effectiveness of the algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhang, M., Yu, J.: Fuzzy partitional clustering algorithms. Journal of Software 15(6), 858–869 (2004)
Alfred, R.: Summarizing Relational Data Using Semi-Supervised Genetic Algorithm-Based Clustering Techniques. Journal of Computer Science 6(7), 775–784 (2010)
Anthony, A.P.: Ph.D. Stochastic and iterative techniques for relational data clustering, 175 pages, 3359070. University Of Maryland, Baltimore County (2009)
Yin, X., Han, J., Yu, P.S.: CrossClus: User-Guided Multi-Relational Clustering. In: Data Mining and Knowledge Discovery (DAMI), vol. 15(3), pp. 321–348 (2007)
Sun, J.G., Liu, J., Zhao, L.Y.: Clustering algorithms research. Journal of Software 19(1), 48–61 (2008)
Li, K.L., Cao, Z., Cao, L.P., Zhang, C., Liu, M.: Some Developments on Semi-Supervised Clustering. PR & AI 22(5), 735–742 (2009)
Yin, X., Hu, E., Chen, S.: Discriminative Semi-Supervised Clustering Analysis with Pair wise Constraints. Journal of Software 19(11), 2791–2802 (2008)
Gao, Y., Liu, D.Y., Qi, H., Liu, H.: Semi-Supervised K-means clustering algorithm for multi-type relational data. Journal of Software 19(11), 2814–2821 (2008)
Xiao, Y., Yu, J.: Semi-Supervised Clustering Based on Affinity Propagation Algorithm. Journal of Software 19(11), 2803–2813 (2008)
PKDD 1999, Discovery Challenge Guide to the Financial Data Set (1999), http://lisp.vse.cz/pkdd99/Challenge/berka.htm
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Xia, Z., Zhang, W., Cai, S., Xia, S. (2011). Multi-relational Data Semi-supervised K-Means Clustering Algorithm. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7002. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23881-9_54
Download citation
DOI: https://doi.org/10.1007/978-3-642-23881-9_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23880-2
Online ISBN: 978-3-642-23881-9
eBook Packages: Computer ScienceComputer Science (R0)