Skip to main content

Multi-relational Data Semi-supervised K-Means Clustering Algorithm

  • Conference paper
Artificial Intelligence and Computational Intelligence (AICI 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7002))

  • 2384 Accesses

Abstract

Based on the traditional K-means clustering algorithm, a new semi-supervised K-means clustering algorithm (MMK-means) is proposed in this paper, in which use semi-supervised learning method to solve the problem of clustering on multi-relational data set. In order to improve the quality of clustering results, the algorithm making full use of the various relationships between objects and attributes to guide the choice of the marked data, and use these relationships to the initial center of clusters. Experimental results on Financial Data database verify the accuracy and effectiveness of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Zhang, M., Yu, J.: Fuzzy partitional clustering algorithms. Journal of Software 15(6), 858–869 (2004)

    MATH  Google Scholar 

  2. Alfred, R.: Summarizing Relational Data Using Semi-Supervised Genetic Algorithm-Based Clustering Techniques. Journal of Computer Science 6(7), 775–784 (2010)

    Article  Google Scholar 

  3. Anthony, A.P.: Ph.D. Stochastic and iterative techniques for relational data clustering, 175 pages, 3359070. University Of Maryland, Baltimore County (2009)

    Google Scholar 

  4. Yin, X., Han, J., Yu, P.S.: CrossClus: User-Guided Multi-Relational Clustering. In: Data Mining and Knowledge Discovery (DAMI), vol. 15(3), pp. 321–348 (2007)

    Google Scholar 

  5. Sun, J.G., Liu, J., Zhao, L.Y.: Clustering algorithms research. Journal of Software 19(1), 48–61 (2008)

    Article  MATH  Google Scholar 

  6. Li, K.L., Cao, Z., Cao, L.P., Zhang, C., Liu, M.: Some Developments on Semi-Supervised Clustering. PR & AI 22(5), 735–742 (2009)

    Google Scholar 

  7. Yin, X., Hu, E., Chen, S.: Discriminative Semi-Supervised Clustering Analysis with Pair wise Constraints. Journal of Software 19(11), 2791–2802 (2008)

    MATH  Google Scholar 

  8. Gao, Y., Liu, D.Y., Qi, H., Liu, H.: Semi-Supervised K-means clustering algorithm for multi-type relational data. Journal of Software 19(11), 2814–2821 (2008)

    Article  MATH  Google Scholar 

  9. Xiao, Y., Yu, J.: Semi-Supervised Clustering Based on Affinity Propagation Algorithm. Journal of Software 19(11), 2803–2813 (2008)

    Article  MATH  Google Scholar 

  10. PKDD 1999, Discovery Challenge Guide to the Financial Data Set (1999), http://lisp.vse.cz/pkdd99/Challenge/berka.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Xia, Z., Zhang, W., Cai, S., Xia, S. (2011). Multi-relational Data Semi-supervised K-Means Clustering Algorithm. In: Deng, H., Miao, D., Lei, J., Wang, F.L. (eds) Artificial Intelligence and Computational Intelligence. AICI 2011. Lecture Notes in Computer Science(), vol 7002. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23881-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23881-9_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23880-2

  • Online ISBN: 978-3-642-23881-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy