Skip to main content

Applying Backtracking Heuristics for Constrained Two-Dimensional Guillotine Cutting Problems

  • Conference paper
Information Computing and Applications (ICICA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7030))

Included in the following conference series:

Abstract

The Backtracking Heuristic (BH) methodology consists in to construct blocks of items by combination beetween heristics, that solve mathematical programming models, and backtrack search algorithm to figure out the best heuristics and their best ordering. BH has been re- cently introduced in the literature in order to solve three-dimensional Knapsack Loadin Problems, showing promising results. In the present Work we apply the same methodology to solve constrained two-dimensional Guillotine cutting problems. In order to assess the potentials of this novel ersion also for cutting problems, we conducted computational experiments on a set of difficult and well known benchmark instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aráujo, L.J.P., Pinheiro, P.R.: Combining Heuristics Backtracking and Genetic Algorithm to Solve the Container Loading Problem withWeight Distribution. Advances in Intelligent and Soft Computing 73, 95–102 (2010)

    Article  Google Scholar 

  2. Aráujo, L.J.P., Pinheiro, P.R.: Heuristics Backtracking and a Typical Genetic Algorithm for the Container Loading Problem withWeight Distribution. Communications in Computer and Information Science 16, 252–259 (2010)

    Article  Google Scholar 

  3. Arenales, M.N., Morabito, R.N.: An And/Or-Graph Approach To The Solution Of Two-Dimensional non-Guillotine Cutting Problems. European Journal of Operational Research 84(1), 599–617 (1995)

    Article  MATH  Google Scholar 

  4. Beasley, J.E.: An Exact Two-dimensional Non-guillotine Cutting Tree Search Procedure. Operations Research 33(1), 49–64 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beasley, J.E.: Algorithms for Unconstrained Two-dimensional Guillotine Cutting. Journal of Operational Research Society 36(4), 297–306 (1985)

    Article  MATH  Google Scholar 

  6. Beasley, J.E.: OR-Library: distributing test problems by electronic mail. Journal of the Operational Research Society 41(11), 1069–1072 (1990)

    Article  Google Scholar 

  7. Bischoff, E., Dowsland, W.B.: An Application of the Micro to Product Design and Distribution. Journal of the Operational Research Society 33(3), 271–280 (1982)

    Article  Google Scholar 

  8. Blesa, M.J., Blum, C., Roli, A., Sampels, M.: HM 2005. LNCS, vol. 3636, pp. VI–VII. Springer, Heidelberg (2005)

    Book  MATH  Google Scholar 

  9. Raidl, G.R.: A Unified View on Hybrid Metaheuristics. In: Almeida, F., Blesa Aguilera, M.J., Blum, C., Moreno Vega, J.M., Pérez Pérez, M., Roli, A., Sampels, M. (eds.) HM 2006. LNCS, vol. 4030, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  10. Carnieri, C., Mendoza, G.A., Lupold, W.G.: Optimal Cutting of Dimension Parts from Lumber with defect: a Heuristic Solution Procedure. Forest Products Journal, 66–72 (1993)

    Google Scholar 

  11. Christofides, N., Whitlock, C.: An algorithm for two-dimensional cutting problems. Operations Research 25(1), 30–44 (1977)

    Article  MATH  Google Scholar 

  12. Dowsland, K.A., Dowsland, W.B.: Packing Problems. European Journal of Operational Research 56(1), 2–14 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dyckhoff, H.: A typology of cutting and packing problems. European Journal of Operational Research 44, 145–159 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fekete, S.P., Schepers, J.: A New Exact Algorithm for General Orthogonal D-dimensional Knapsack Problems. In: Burkard, R.E., Woeginger, G.J. (eds.) ESA 1997. LNCS, vol. 1284, pp. 144–156. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  15. Garey, M.R., Johnson, D.S., Sethi, R.: Computers and intractability: a guide to the theory of NP-completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  16. Gilmore, P., Gomory, R.: A Linear Programming Approach to the Cutting Stock Problem. Operations Research 9, 849–859 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gilmore, P., Gomory, R.: A Linear Programming Approach to the Cutting Stock Problem - Part II. Operations Research 11, 863–888 (1963)

    Article  MATH  Google Scholar 

  18. Gilmore, P., Gomory, R.: Multistage Cutting Stock Problems of Two and MoreDimensions. Operations Research 14, 94–120 (1965)

    Article  MATH  Google Scholar 

  19. Mahfoud, S.W., Goldberg, D.E.: Parallel Recombinative Simulated Annealing: A Genetic Algorithm. Parallel Computing 21(1), 1–28 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  20. Morabito, R.N., Arenales, M.N., Arcaro, V.F.: An And-Or Graph Approach For Two-Dimens ional Cutting Problems. European Journal of Operational Research 58(2), 263–271 (1992)

    Article  MATH  Google Scholar 

  21. Morabito, R., Arenales, M.: An and/or-graph approach to the container loading problem. International Transactions in Operational Research 1, 59–73 (1994)

    Article  MATH  Google Scholar 

  22. Moscato, P.: Memetic algorithms: A short introduction. In: New Ideas in Optimization, pp. 219–234. McGraw-Hill (1999)

    Google Scholar 

  23. Nepomuceno, N., Pinheiro, P.R., Coelho, A.L.V.: Tackling the Container Loading Problem: A Hybrid Approach Based on Integer Linear Programming and Genetic Algorithms. In: Cotta, C., van Hemert, J. (eds.) EvoCOP 2007. LNCS, vol. 4446, pp. 154–165. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  24. Nepomuceno, N.V., Pinheiro, P.R., Coelho, A.L.V.: A Hybrid Optimization Framework for Cutting and Packing Problems: Case Study on Constrained 2D Nonguillotine Cutting. In: Cotta, C., van Hemert, J. (eds.) Recent Advances in Evolutionary Computation for Combinatorial Optimization. SCI, vol. 153, ch. 6, pp. 87–99. Springer, Heidelberg (2008) ISBN:978-3-540-70806-3

    Chapter  Google Scholar 

  25. Oliveira, J.F., Ferreira, J.S.: An improved version of Wang’s algorithm for two-dimensional cutting problems. European Journal of Operational Research 44, 256–266 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pinheiro, P.R., Coelho, A.L.V., Aguiar, A.B., Bonates, T.O.: On the Concept of Density Control and its Application to a Hybrid Optimization Framework: Investigation into Cutting Problems. Computers & Industrial Engineering (to appear, 2011)

    Google Scholar 

  27. Pisinger, D.: Heuristc for the Conteiner Loading Problem. European Journal of Operational Research 141, 382–392 (2000)

    Article  Google Scholar 

  28. Tschoke, S., Holthofer, N.: A new parallel approach to the constrained two-dimensional cutting stock problem. Preprint, University of Paderbon, D.C.S. 33095 Paderborn, Germany (1996)

    Google Scholar 

  29. Wang, P.Y.: Two Algorithms for Constrained Two-Dimensional Cutting Stock Problems. Operations Research 31, 573–586 (1983)

    Article  MATH  Google Scholar 

  30. Wascher, G., Hausner, H., Schumann, H.: An improved typology of cutting and packing problems. European Journal of Operational Research 183(3), 1109–1130 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jonatã, L., Araújo, P., Pinheiro, P.R. (2011). Applying Backtracking Heuristics for Constrained Two-Dimensional Guillotine Cutting Problems. In: Liu, B., Chai, C. (eds) Information Computing and Applications. ICICA 2011. Lecture Notes in Computer Science, vol 7030. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-25255-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-25255-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-25254-9

  • Online ISBN: 978-3-642-25255-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy