Skip to main content

Coloured Glasses

  • Chapter
Chemistry of Glasses

Abstract

Glass is usually coloured by dissolving transition-metal ions in it. In this chapter we shall discuss the elementary principles of ligand field and molecular orbital theory with which the absorption bands produced by different transition-metal ions can be interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Graddon, D. P. in (1961). An Introduction 10 Co-ordination Chemistry, Pergamon Press, p. 1.

    Google Scholar 

  2. Hantzsch, A. and Werner. A. (1890). Ber. Deutsch. Chem. Ges., 23, 11.

    Article  Google Scholar 

  3. Werner, A. (1891). Vierteljahresschrift Naturforsch. Ges. Zürich, 36, 129.

    Google Scholar 

  4. Werner, A. (1893). Z. Anorg. Allg. Chem., 3, 267.

    Google Scholar 

  5. Racah, G. Phys. Rev., (1942; 1943),62,438; 63, 367.

    Google Scholar 

  6. Figgis, B. N. (1966), in Introduction to Ligand Fields, Interscience.

    Google Scholar 

  7. Bates, T. and Douglas, R. W. (1959), Trans. Soc. Glass Technol, 43, 289.

    Google Scholar 

  8. Paul, A. (1970), Phys. Chem. Glasses, 11, 168.

    Google Scholar 

  9. Cotton, F. A. and Wilkinson, C. (1966), Advanced Inorganic Chemistry, Interscience, London.

    Google Scholar 

  10. Juza, R., Seidel, H. and Tiedemann, T. (1966), Angew. Chem. ( Int. ), 5, 85.

    Article  Google Scholar 

  11. Lever, A. B. P. (1974), J. Chem. Education, 51, 612.

    Article  Google Scholar 

  12. Ford, P., De, F. P., Gaunder, R. and Taube, H. (1968), J. Amer. Chem. Soc., 90, 1187.

    Article  Google Scholar 

  13. Jorgensen, C. K. (1963), Inorganic Complexes, Academic Press, London, p. 5.

    Google Scholar 

  14. Steele, F. N. and Douglas, R. W. (1965), Phys. Chem. Glasses, 6, 246.

    Google Scholar 

  15. Wolfsberg, M. and Helmholz, L. (1952), J. Chem. Phys., 20, 837.

    Article  Google Scholar 

  16. Liehr, A. D. and Ballhausen, C. J. (1958), J. Mol. Spec., 2, 342.

    Article  Google Scholar 

  17. Wood, D. L. and Remeika, J. P. (1966), J. Appl. Phys., 37, 1232.

    Article  Google Scholar 

  18. Ballhausen, C. J. (1962), Introduction to Ligand Field Theory, McGraw Hill, London, p. l07.

    Google Scholar 

  19. Douglas, R. W. and Zaman, M. S. (1969), Phys. Chem. Glasses, 10, 125.

    Google Scholar 

  20. Brown, D. and Douglas, R. W. (1965), Glass Technol., 6, 190.

    Google Scholar 

  21. Paul, A. (1973), Phys. Chem. Glasses, 14, 96.

    Google Scholar 

  22. Kumar, S. and Sen, P. (1960), Phys. Chem. Glasses, 1, 175.

    Google Scholar 

  23. Atmaram and Prasad, S. N. (1962), Advances in Glass Technology, Plenum Press, New York, p. 256.

    Google Scholar 

  24. Rawson, H. (1965), Phys. Chem. Glasses, 6, 81.

    Google Scholar 

  25. Weyl, W. A. (1967), Coloured Glasses, Society of Glass Technology, p. 420.

    Google Scholar 

  26. Banerjee, S. and Paul, A. (1974), J. Amer. Ceram. Soc., 57, 286.

    Article  Google Scholar 

  27. Bingham, K. and Parke, S. (1965), Phys. Chem. Glasses. 6, 224.

    Google Scholar 

  28. Edwards, R. J., Paul, A. and Douglas, R. W. (1972), Phys. Chem. Glasses, 13, 137.

    Google Scholar 

  29. Paul, A. and Douglas, R. W. (1968), Phys. Chem. Glasses, 9, 27.

    Google Scholar 

  30. Rowe, M. D., McCaffery, A. 1., Gale, R., and Copsey, D. N., (1972), Inorg. Chem., 11, 3090.

    Article  Google Scholar 

  31. Paul, A. (1970), Phys. Chem. Glasses, 11, 159.

    Google Scholar 

  32. Paul, A. and Tiwari, A. N. (1974), J. Mater. Sci., 9, 1037.

    Google Scholar 

  33. Paul, A. Sen, S. C. and Srivastava, D. (1973), J. Mater. Sci., 8, 1110.

    Article  Google Scholar 

  34. Paul, A. (1970), Phys. Chem. Glasses, 11, 46.

    Google Scholar 

  35. Paul, A. and Gomalka, S. (1975), Phys. Chem. Glasses, 16, 57.

    Google Scholar 

  36. Paul, A. (1972), Phys. Chem. Glasses, 13, 144. 276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 A. Paul

About this chapter

Cite this chapter

Paul, A. (1982). Coloured Glasses. In: Chemistry of Glasses. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5918-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5918-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-5920-0

  • Online ISBN: 978-94-009-5918-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy