Skip to main content

Advertisement

Log in

A 99.8% Energy-Reduced Two-Stage Mixed Switching Scheme for SAR ADC Without Reset Energy

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

An ultra-low power consumption two-stage mixed switching scheme for successive approximation register (SAR) analog-to-digital converter (ADC) is presented. Using two simple switches, the novel switching scheme divides the capacitor arrays into two sub-arrays: stage-one and stage-two arrays. The two sub-arrays convert high and low bits cycles, respectively. Once the high bits conversion cycles are completed, the corresponding sub-arrays are split off from the capacitor arrays. This decreases the number of capacitors used in the rest conversion procedure. Thus, the proposed method improves the energy efficiency of SAR ADC. Thanks to C–2C dummy capacitors and two-stage capacitor arrays, the novel architecture achieves 86% reduction in capacitor area than conventional SAR ADC. Furthermore, based on the charge sharing technique and monotonic switching method, the proposed switching scheme does not consume reset energy and achieves 99.8% less switching energy than the conventional switching method. In addition, the proposed scheme is less sensitive to capacitor mismatch because of its great performance in linearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S.-U. Baek, K.-Y. Lee, M. Lee, Energy-efficient switching scheme for SAR ADC using zero-energy dual capacitor switching. Analog Integr. Circuits Signal Process. 94, 317–322 (2018)

    Article  Google Scholar 

  2. F. Chen, A.P. Chandrakasan, V. Stojanovic, A low-power area-efficient switching scheme for charge-sharing DACs in SAR ADCs, in IEEE Custom Integrated Circuits Conference (CICC) (2010), pp. 1–4

  3. Z. Ding, W. Bai, Z. Zhu, Trade-off between energy and linearity switching scheme for SAR ADC. Analog Integr. Circuits Signal Process. 86, 121–125 (2016)

    Article  Google Scholar 

  4. B. Ghanavati, E. Abiri, M.R. Salehi, A. Keyhani, A. Sanyal, LSB split capacitor SAR ADC with 99.2% switching energy reduction. Analog Integr. Circuits Signal Process. 93, 375–382 (2017)

    Article  Google Scholar 

  5. A.R. Ghasemi, M. Saberi, R. Lotfi, A low-power capacitor switching scheme with low common-mode voltage variation for successive approximation ADC. Microelectron. J. 61, 15–20 (2017)

    Article  Google Scholar 

  6. W. Guo, Z. Zhu, A 0.3 V 8-bit 8.9 fJ/con.-step SAR ADC with sub-DAC merged switching for bio-sensors. Microelectron. J. 68, 44–54 (2017)

    Article  Google Scholar 

  7. Y.F. Hu, Z.C. Yi, Z.H. He, B. Li, Energy-efficient, area-efficient, high-accuracy and low-complexity switching scheme for SAR ADC. IEICE Electron. Express 14, 1–7 (2017)

    Google Scholar 

  8. H. Liang, R. Ding, S. Liu, Z. Zhu, Energy-efficient and area-efficient asymmetric capacitor switching scheme for SAR ADCs. J. Circuits Systems and Computers 27, 1850109 (2017)

    Article  Google Scholar 

  9. Y.H. Liang, Z. Zhu, An energy-efficient switching scheme for low-power SAR ADC design. J. Circuits Syst. Comput. 27, 1850015 (2018)

    Article  Google Scholar 

  10. C.C. Liu, S.J. Chang, G.Y. Huang, Y.Z. Lin, A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J. Solid-State Circuits 45, 731–740 (2010)

    Article  Google Scholar 

  11. J. Liu, R. Ding, S. Liu, Z. Zhu, A highly energy-efficient, highly area-efficient capacitance multiplexing switching scheme for SAR ADC. Analog Integr. Circuits Signal. Process. 96, 207–215 (2018)

    Article  Google Scholar 

  12. S.A. Mahmoud, H.A. Salem, H.M. Albalooshi, An 8-bit, 10KS/s, 1.87 µW successive approximation analog to digital converter in 0.25 µm CMOS technology for ECG detection systems. Circuits Syst. Signal Process. 34, 2419–2439 (2015)

    Article  Google Scholar 

  13. D. Osipov, S. Paul, Two-step reset method for energy-efficient SAR ADC switching schemes. Electron. Lett. 52, 816–817 (2016)

    Article  Google Scholar 

  14. A. Sanyal, N. Sun, SAR ADC architecture with 98% reduction in switching energy over conventional scheme. Electron. Lett. 49, 248–250 (2013)

    Article  Google Scholar 

  15. S. Sarafi, A.K.B. Aain, J. Abbaszadeh, High-linear, energy-efficient and area-efficient switching algorithm for high-speed SAR ADCs. Microelectron. J. 45, 288–296 (2014)

    Article  Google Scholar 

  16. X. Tong, M. Ghovanloo, Energy-efficient switching scheme in SAR ADC for biomedical electronics. Electron. Lett. 51, 676–678 (2015)

    Article  Google Scholar 

  17. X. Tong, Y. Zhang, 98.8% switching energy reduction in SAR ADC for bioelectronics application. Electron. Lett. 51, 1052–1054 (2015)

    Article  Google Scholar 

  18. X. Tong, Y. Chen, Low-power high-linearity switching procedure for charge-redistribution SAR ADC. Circuits Systems and Signal Processing 36, 3825–3834 (2017)

    Article  Google Scholar 

  19. S. Ur Rehman, A.M. Kamboh, A CMOS micro-power and area efficient neural recording and stimulation front-end for biomedical applications. Circuits Syst. Signal Process. 34, 1725–1746 (2015)

    Article  Google Scholar 

  20. H. Wang, C.Y. Liu, W.M. Xie, Q.D. Zhang, Tri-level capacitor-splitting switching scheme with high energy-efficiency for SAR ADCs. IEICE Electron. Express 13, 1–5 (2016)

    Google Scholar 

  21. H. Wang, W.M. Xie, Z.X. Chen, S.J. Cai, A capacitor-splitting switching scheme with low total power consumption for SAR ADCs. J. Circuits Syst. Comput. 28(04), 1920002 (2018)

    Article  Google Scholar 

  22. A. Wu, J. Wu, Energy-efficient switching scheme for ultra-low voltage SAR ADC. Analog Integr. Circuits Signal Process. 90, 507–511 (2017)

    Article  Google Scholar 

  23. Y. Wu, X. Cheng, X. Zeng, A 960 μW 10-bit 70-MS/s SAR ADC with an energy-efficient capacitor-switching scheme. Microelectron. J. 44, 1260–1267 (2013)

    Article  Google Scholar 

  24. L.B. Xie, G.J. Wen, J.X. Liu, Y. Wang, Energy-efficient hybrid capacitor switching scheme for SAR ADC. Electron. Lett. 50, 22–23 (2014)

    Article  Google Scholar 

  25. L. Xie, W. Nie, X. Yang, M. Zhou, A group reset method for energy-efficient SAR ADC switching schemes. Analog Integr. Circuits Signal Process. 96, 183–187 (2018)

    Article  Google Scholar 

  26. L. Xie, J. Su, Y. Wang, J. Liu, G. Wen, Switching scheme with 98.4% switching energy reduction and high accuracy for SAR ADCs. Analog Integr. Circuits Signal Process. 90, 681–686 (2017)

    Article  Google Scholar 

  27. B. Yazdani, A. Khorami, M. Sharifkhani, Low-power DAC with charge redistribution sampling method for SAR ADCs. Electron. Lett. 52, 187–188 (2016)

    Article  Google Scholar 

  28. T. Yousefi, A. Dabbaghian, M. Yavari, An energy-efficient DAC switching method for SAR ADCs. IEEE Trans. Circuits Syst. II Exp. Briefs 1, 41–45 (2018)

    Article  Google Scholar 

  29. C. Yuan, Y. Lam, Low-energy and area-efficient tri-level switching scheme for SAR ADC. Electron. Lett. 48, 482–483 (2012)

    Article  Google Scholar 

  30. Y. Zhang, Y. Li, Z. Zhu, A charge-sharing switching scheme for SAR ADCs in biomedical applications. Microelectron. J. 75, 128–136 (2018)

    Article  Google Scholar 

  31. Y. Zhu, C.H. Chan, U.F. Chio, S.W. Sin, U. Seng-Pan, R.P. Martins, F. Maloberti, A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS. IEEE J. Solid-State Circuits 45, 1111–1121 (2010)

    Article  Google Scholar 

  32. Z. Zhu, Y. Xiao, X. Song, V CM-based monotonic capacitor switching scheme for SAR ADC. Electron. Lett. 49, 327–329 (2013)

    Article  Google Scholar 

  33. H.Y. Zhuang, Z. Zhu, Y.T. Yang, A 19-nW 0.7-V CMOS voltage reference with no amplifiers and no clock circuits. IEEE Trans. Circuits Syst. II Exp. Briefs 11, 830–834 (2014)

    Article  Google Scholar 

  34. H.Y. Zhuang, W.J. Guo, J.X. Liu, H. Tang, Z. Zhu, L. Chen, N. Sun, A second-order noise-shaping SAR ADC with passive integrator and tri-level voting.IEEE J. Solid-State Circuits 54, 1636–1647 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 61306033) and the Science and Technology on Low-Light-Level Night Vision Laboratory (No. 61424120503162412005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hualian Tang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhuang, Y. & Tang, H. A 99.8% Energy-Reduced Two-Stage Mixed Switching Scheme for SAR ADC Without Reset Energy. Circuits Syst Signal Process 38, 5426–5447 (2019). https://doi.org/10.1007/s00034-019-01151-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-019-01151-9

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy