Abstract
The aim of the current paper is to introduce a global optimization algorithm, inspired from the survival strategies of flying foxes during a heatwave, called as Flying Foxes Optimization (FFO). The proposed method exploits a Fuzzy Logic (FL) technique to determine the parameters individually for each solution, thus resulting in a parameters-free optimization algorithm. To evaluate FFO, 56 benchmark functions, including the CEC2017 test function suite and three real-world engineering problems, are employed and its performance is compared to those of state-of-the-art metaheuristics, when it comes to global optimization. The comparison results reveal that the proposed FFO optimizer constitutes a powerful attractive alternative for global optimization.
Graphical abstract

















Similar content being viewed by others
References
Tharwat A, Schenck W (2021) A conceptual and practical comparison of PSO-style optimization algorithms. Expert Syst Appl 167:114430. https://doi.org/10.1016/j.eswa.2020.114430
Xing B, Gao W-J (2014) Innovative computational intelligence: a rough guide to 134 clever algorithms. In: Intelligent systems reference library, pp 3–17
Mortazavi A (2021) Bayesian interactive search algorithm: a new probabilistic swarm intelligence tested on mathematical and structural optimization problems. Adv Eng Softw 155:102994. https://doi.org/10.1016/j.advengsoft.2021.102994
Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science. New York, pp 39–43
Yang X-S (2008) Nature-inspired metaheuristic algorithms. Luniver Press, London
Pham DT, Ghanbarzadeh A, Koç E et al (2006) The Bees Algorithm—a novel tool for complex optimisation problems. In: Intelligent production machines and systems—2nd I*PROMS Virtual International Conference, pp 454–459
Mehrabian AR, Lucas C (2006) A novel numerical optimization algorithm inspired from weed colonization. Ecol Inform 1:355–366. https://doi.org/10.1016/j.ecoinf.2006.07.003
Yang X-S, Deb S (2009) Cuckoo Search via Lévy flights. In: 2009 world congress on nature & biologically inspired computing (NaBIC). IEEE, pp 210–214
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey Wolf optimizer. Adv Eng Softw 69:46–61. https://doi.org/10.1016/J.ADVENGSOFT.2013.12.007
Mirjalili S, Lewis A (2016) The Whale optimization algorithm. Adv Eng Softw 95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008
Mirjalili S (2015) Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm. Knowl-Based Syst 89:228–249. https://doi.org/10.1016/j.knosys.2015.07.006
Yang X-S (2010) A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N (eds) Nature inspired cooperative strategies for optimization. Springer, Berlin, pp 65–74
Goldberg DE (1989) Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Company Inc., New York
Storn R, Price K (1997) Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J Glob Optim. https://doi.org/10.1023/A:1008202821328
Zhao J, Gao Z-M (2020) The improved mayfly optimization algorithm with Chebyshev map. J Phys Conf Ser 1684:012075. https://doi.org/10.1088/1742-6596/1684/1/012075
Kallioras NA, Lagaros ND, Avtzis DN (2018) Pity beetle algorithm—a new metaheuristic inspired by the behavior of bark beetles. Adv Eng Softw 121:147–166. https://doi.org/10.1016/j.advengsoft.2018.04.007
Yildiz BS, Pholdee N, Bureerat S et al (2021) Enhanced grasshopper optimization algorithm using elite opposition-based learning for solving real-world engineering problems. Eng Comput 1:3. https://doi.org/10.1007/s00366-021-01368-w
Le CN, Tran NT, Dao TP (2021) A hybrid approach of density-based topology, multilayer perceptron, and water cycle-moth flame algorithm for multi-stage optimal design of a flexure mechanism. Eng Comput 1:3. https://doi.org/10.1007/s00366-021-01417-4
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. In: IEEE transactions on evolutionary computation, pp 67–82
Tejani GG, Savsani VJ, Bureerat S et al (2018) Topology optimization of truss subjected to static and dynamic constraints by integrating simulated annealing into passing vehicle search algorithms. Eng Comput 35:499–517. https://doi.org/10.1007/S00366-018-0612-8
Abedinia O, Amjady N, Ghasemi A (2016) A new metaheuristic algorithm based on shark smell optimization. Complexity 21:97–116. https://doi.org/10.1002/cplx.21634
Aghay Kaboli SH, Selvaraj J, Rahim NA (2017) Rain-fall optimization algorithm: a population based algorithm for solving constrained optimization problems. J Comput Sci 19:31–42. https://doi.org/10.1016/j.jocs.2016.12.010
Czerniak JM, Zarzycki H (2017) Artificial Acari Optimization as a new strategy for global optimization of multimodal functions. J Comput Sci 22:209–227. https://doi.org/10.1016/j.jocs.2017.05.028
Tejani GG, Savsani VJ, Patel VK (2016) Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization. J Comput Des Eng 3:226–249. https://doi.org/10.1016/J.JCDE.2016.02.003
Jahani E, Chizari M (2018) Tackling global optimization problems with a novel algorithm—Mouth Brooding Fish algorithm. Appl Soft Comput 62:987–1002. https://doi.org/10.1016/J.ASOC.2017.09.035
Cuevas E, Gálvez J, Avila K et al (2020) A new metaheuristic approach based on agent systems principles. J Comput Sci 47:101244. https://doi.org/10.1016/j.jocs.2020.101244
Alsattar HA, Zaidan AA, Zaidan BB (2019) Novel meta-heuristic bald eagle search optimisation algorithm. Artif Intell Rev. https://doi.org/10.1007/s10462-019-09732-5
Shadravan S, Naji HR, Bardsiri VK (2019) The Sailfish Optimizer: a novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems. Eng Appl Artif Intell 80:20–34. https://doi.org/10.1016/j.engappai.2019.01.001
Hayyolalam V, Pourhaji Kazem AA (2020) Black Widow Optimization Algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng Appl Artif Intell. https://doi.org/10.1016/j.engappai.2019.103249
Zervoudakis K, Tsafarakis S (2020) A mayfly optimization algorithm. Comput Ind Eng 145:106559. https://doi.org/10.1016/j.cie.2020.106559
Emami H (2021) Hazelnut tree search algorithm: a nature-inspired method for solving numerical and engineering problems. Eng Comput 1:3. https://doi.org/10.1007/s00366-021-01460-1
Naruei I, Keynia F (2021) Wild horse optimizer: a new meta-heuristic algorithm for solving engineering optimization problems. Eng Comput 1:3. https://doi.org/10.1007/s00366-021-01438-z
Liu Z, Jiang P, Wang J, Zhang L (2021) Ensemble forecasting system for short-term wind speed forecasting based on optimal sub-model selection and multi-objective version of Mayfly Optimization algorithm. Expert Syst Appl 177:114974. https://doi.org/10.1016/j.eswa.2021.114974
Kumar S, Tejani GG, Mirjalili S (2018) Modified symbiotic organisms search for structural optimization. Eng Comput 35:1269–1296. https://doi.org/10.1007/S00366-018-0662-Y
Kumar S, Tejani GG, Pholdee N, Bureerat S (2021) Multi-objective passing vehicle search algorithm for structure optimization. Expert Syst Appl 169:114511. https://doi.org/10.1016/J.ESWA.2020.114511
Kumar S, Tejani GG, Pholdee N, Bureerat S (2021) Multiobjecitve structural optimization using improved heat transfer search. Knowl-Based Syst 219:106811. https://doi.org/10.1016/J.KNOSYS.2021.106811
Luiz Junho Pereira J, Brendon Francisco M, Aparecida Diniz C et al (2020) Lichtenberg algorithm: a novel hybrid PHYSICS-based meta-heuristic for global optimization. Expert Syst Appl. https://doi.org/10.1016/j.eswa.2020.114522
Bhattacharyya T, Chatterjee B, Singh PK et al (2020) Mayfly in harmony: a new hybrid meta-heuristic feature selection algorithm. IEEE Access. https://doi.org/10.1109/access.2020.3031718
Heidari AA, Mirjalili S, Faris H et al (2019) Harris hawks optimization: algorithm and applications. Futur Gener Comput Syst 97:849–872. https://doi.org/10.1016/j.future.2019.02.028
Nobile MS, Cazzaniga P, Besozzi D et al (2018) Fuzzy self-tuning PSO: a settings-free algorithm for global optimization. Swarm Evol Comput 39:70–85. https://doi.org/10.1016/j.swevo.2017.09.001
Tsafarakis S, Zervoudakis K, Andronikidis A, Altsitsiadis E (2020) Fuzzy self-tuning differential evolution for optimal product line design. Eur J Oper Res 287:1161–1169. https://doi.org/10.1016/j.ejor.2020.05.018
Aziz SA, Clements GR, Giam X et al (2017) Coexistence and conflict between the island Flying fox (Pteropus hypomelanus) and humans on Tioman Island, Peninsular Malaysia. Hum Ecol 45:377–389. https://doi.org/10.1007/s10745-017-9905-6
Almeida FC, Giannini NP, Simmons NB, Helgen KM (2014) Each flying fox on its own branch: a phylogenetic tree for Pteropus and related genera (Chiroptera: Pteropodidae). Mol Phylogenet Evol 77:83–95. https://doi.org/10.1016/j.ympev.2014.03.009
Welbergen JA, Klose SM, Markus N, Eby P (2008) Climate change and the effects of temperature extremes on Australian flying-foxes. Proc R Soc B Biol Sci 275:419–425. https://doi.org/10.1098/rspb.2007.1385
Daly N (2020) Flying foxes are dying en masse in Australia’s extreme heat. https://www.nationalgeographic.com/animals/article/flying-foxes-are-dying-en-masse-in-australias-extreme-heat
Haupt RL, Haupt SE (2004) The Continuous genetic algorithm. In: Haupt RL, Haupt SE (eds) Practical genetic algorithms, 2nd edn. Wiley, Hoboken, pp 51–66
Huang C, Li Y, Yao X (2019) A survey of automatic parameter tuning methods for metaheuristics. IEEE Trans Evol Comput. https://doi.org/10.1109/tevc.2019.2921598
Tatsis VA, Parsopoulos KE (2019) Dynamic parameter adaptation in metaheuristics using gradient approximation and line search. Appl Soft Comput J 74:368–384. https://doi.org/10.1016/j.asoc.2018.09.034
Sugeno M (1985) Industrial applications of fuzzy control. Elsevier, North-Holland
Jamil M, Yang X-S (2013) A literature survey of benchmark functions for global optimization problems. Int J Math Model Numer Optim 4:150–194. https://doi.org/10.1504/IJMMNO.2013.055204
Zong Woo Geem ZW, Joong Hoon Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. SIMULATION 76:60–68. https://doi.org/10.1177/003754970107600201
Dinno A (2015) Nonparametric pairwise multiple comparisons in independent groups using Dunn’s test. Stata J Promot Commun Stat Stata 15:292–300. https://doi.org/10.1177/1536867X1501500117
Fan Z, Fang Y, Li W et al (2018) LSHADE44 with an improved constraint-handling method for solving constrained single-objective optimization problems. In: 2018 IEEE congress on evolutionary computation (CEC). IEEE, pp 1–8
Johnson SM (1954) Optimal two- and three-stage production schedules with setup times included. Nav Res Logist Q. https://doi.org/10.1002/nav.3800010110
Morton TE, Pentico DW (1993) Heuristic scheduling systems: with applications to production systems and project management. Wiley, Hoboken
Komaki GM, Kayvanfar V (2015) Grey Wolf Optimizer algorithm for the two-stage assembly flow shop scheduling problem with release time. J Comput Sci 8:109–120. https://doi.org/10.1016/j.jocs.2015.03.011
da Silva TG, Queiroga E, Ochi LS et al (2019) A hybrid metaheuristic for the minimum labeling spanning tree problem. Eur J Oper Res 274:22–34. https://doi.org/10.1016/j.ejor.2018.09.044
Heris S (2020) Minimum Spanning Tree using PSO, ICA and FA. https://yarpiz.com/407/ypap116-minimum-spanning-tree. Accessed 12 Apr 2021
Hosseini SM, Khaled AA, Jin M (2012) Solving Euclidean minimal spanning tree problem using a new meta-heuristic approach: imperialist competitive ALGORITHM (ICA). In: IEEE International conference on industrial engineering and engineering management. IEEE Computer Society, pp 176–181
Ghodratnama A, Tavakkoli-Moghaddam R, Baboli A (2013) Comparing three proposed meta-heuristics to solve a new p-hub location-allocation problem. IJE Trans C Asp 26:1043–1058. https://doi.org/10.5829/idosi.ije.2013.26.09c.11
Heris S (2020) p-Hub location allocation problem. https://yarpiz.com/383/ypap110-hub-location-allocation. Accessed 13 Apr 2021
Mokhtarzadeh M, Tavakkoli-Moghaddam R, Triki C, Rahimi Y (2021) A hybrid of clustering and meta-heuristic algorithms to solve a p-mobile hub location–allocation problem with the depreciation cost of hub facilities. Eng Appl Artif Intell 98:104121. https://doi.org/10.1016/j.engappai.2020.104121
Sarvari PA, Yeni FB, Cevikcan E (2018) Hub location allocation problems and solution algorithms. In: Yilmaz OF, Tufekci S (eds) Handbook of research on applied optimization methodologies in manufacturing systems, 1st ed. IGI Global, pp 77–106
Katebi J, Shoaei-parchin M, Shariati M et al (2020) Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures. Eng Comput 36:1539–1558. https://doi.org/10.1007/S00366-019-00780-7
Kumar Y, Kaur A (2021) Variants of bat algorithm for solving partitional clustering problems. Eng Comput. https://doi.org/10.1007/S00366-021-01345-3
Abdollahzadeh B, Gharehchopogh FS (2021) A multi-objective optimization algorithm for feature selection problems. Eng Comput 1:3. https://doi.org/10.1007/s00366-021-01369-9
Tejani GG, Kumar S, Gandomi AH (2021) Multi-objective heat transfer search algorithm for truss optimization. Eng Comput 37:641–662. https://doi.org/10.1007/s00366-019-00846-6
Kumar S, Tejani GG, Pholdee N, Bureerat S (2020) Multi-objective modified heat transfer search for truss optimization. Eng Comput 37:3439–3454. https://doi.org/10.1007/S00366-020-01010-1
Kumar S, Tejani GG, Pholdee N et al (2021) Hybrid heat transfer search and passing vehicle search optimizer for multi-objective structural optimization. Knowl-Based Syst 212:106556. https://doi.org/10.1016/J.KNOSYS.2020.106556
Funding
This research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).

Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
None.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A
This Appendix presents the comparison of FFO’s performance with that of the rest state-of-the-art optimization approaches. Bold values correspond to the best located values.
f | Statistics | FFO | FA | HS | BA | IWO | BAT | CS |
---|---|---|---|---|---|---|---|---|
1 | Min | 6.36E−55 | 8.94E+00 | 2.73E+00 | 6.44E+02 | 6.65E−01 | 6.20E+02 | 6.68E+02 |
Average | 5.45E−54 | 1.49E+01 | 3.51E+00 | 7.52E+02 | 1.01E+00 | 7.48E+02 | 7.60E+02 | |
Median | 3.40E−54 | 1.41E+01 | 3.41E+00 | 7.55E+02 | 9.56E−01 | 7.57E+02 | 7.67E+02 | |
Max | 2.03E−53 | 2.40E+01 | 4.83E+00 | 7.98E+02 | 1.67E+00 | 7.84E+02 | 8.17E+02 | |
Std | 5.70E−54 | 3.63E+00 | 5.66E−01 | 3.92E+01 | 2.57E−01 | 3.84E+01 | 3.83E+01 | |
2 | Min | 2.99E+01 | 1.15E+03 | 1.13E+03 | 2.04E+06 | 1.88E+02 | 2.23E+06 | 1.57E+06 |
Average | 5.69E+01 | 2.95E+03 | 1.60E+03 | 2.46E+06 | 9.60E+02 | 2.64E+06 | 2.46E+06 | |
Median | 4.47E+01 | 3.02E+03 | 1.66E+03 | 2.43E+06 | 7.57E+02 | 2.67E+06 | 2.54E+06 | |
Max | 1.02E+02 | 4.82E+03 | 2.24E+03 | 2.95E+06 | 2.61E+03 | 2.97E+06 | 2.91E+06 | |
Std | 2.26E+01 | 1.16E+03 | 3.43E+02 | 2.28E+05 | 7.00E+02 | 2.18E+05 | 3.07E+05 | |
3 | Min | 1.83E−53 | 1.86E+02 | 4.11E+01 | 1.49E+04 | 1.00E+02 | 1.53E+04 | 1.43E+04 |
Average | 1.57E−52 | 3.15E+02 | 5.89E+01 | 1.75E+04 | 2.81E+02 | 1.72E+04 | 1.68E+04 | |
Median | 6.42E−53 | 3.16E+02 | 5.83E+01 | 1.76E+04 | 2.56E+02 | 1.72E+04 | 1.69E+04 | |
Max | 1.40E−51 | 4.69E+02 | 7.96E+01 | 1.90E+04 | 4.46E+02 | 2.02E+04 | 1.91E+04 | |
Std | 2.75E−52 | 8.47E+01 | 1.04E+01 | 1.08E+03 | 1.08E+02 | 1.17E+03 | 1.54E+03 | |
4 | Min | 9.58E−81 | 7.65E−10 | 8.03E−12 | 1.74E−06 | 2.13E−06 | 1.90E−06 | 2.03E−07 |
Average | 1.90E−67 | 7.53E−08 | 8.27E−11 | 6.27E−03 | 1.21E−05 | 6.34E−03 | 8.50E−03 | |
Median | 1.22E−72 | 3.36E−08 | 5.71E−11 | 1.35E−03 | 9.76E−06 | 1.11E−03 | 3.27E−03 | |
Max | 4.38E−66 | 3.24E−07 | 3.11E−10 | 3.82E−02 | 4.46E−05 | 4.05E−02 | 9.57E−02 | |
Std | 8.66E−67 | 8.89E−08 | 8.74E−11 | 1.06E−02 | 9.02E−06 | 1.10E−02 | 2.09E−02 | |
5 | Min | − 1.00E+00 | − 9.96E−01 | − 9.84E−01 | − 6.11E−01 | − 8.90E−01 | − 5.73E−01 | − 6.11E−01 |
Average | − 1.00E+00 | − 9.90E−01 | − 9.77E−01 | − 4.56E−01 | − 8.37E−01 | − 4.40E−01 | − 4.33E−01 | |
Median | − 1.00E+00 | − 9.91E−01 | − 9.76E−01 | − 4.65E−01 | − 8.39E−01 | − 4.37E−01 | − 4.23E−01 | |
Max | − 1.00E+00 | − 9.79E−01 | − 9.71E−01 | − 2.37E−01 | − 7.85E−01 | − 2.72E−01 | − 2.69E−01 | |
Std | 0.00E+00 | 4.09E−03 | 3.18E−03 | 1.09E−01 | 3.15E−02 | 8.36E−02 | 1.10E−01 | |
6 | Min | 5.63E−29 | 1.30E+02 | 4.98E+01 | 1.53E+03 | 2.23E+02 | 1.54E+03 | 1.54E+03 |
Average | 1.63E−28 | 1.69E+02 | 6.56E+01 | 1.62E+03 | 2.88E+02 | 1.64E+03 | 1.65E+03 | |
Median | 1.62E−28 | 1.73E+02 | 6.41E+01 | 1.62E+03 | 2.77E+02 | 1.64E+03 | 1.64E+03 | |
Max | 3.31E−28 | 2.06E+02 | 8.45E+01 | 1.73E+03 | 3.75E+02 | 1.72E+03 | 1.75E+03 | |
Std | 7.74E−29 | 2.10E+01 | 8.52E+00 | 5.00E+01 | 4.23E+01 | 5.04E+01 | 4.88E+01 | |
7 | Min | 5.42E+00 | 1.61E+01 | 2.10E+01 | 7.06E+01 | 3.50E+01 | 7.54E+01 | 7.42E+01 |
Average | 1.22E+01 | 2.05E+01 | 2.32E+01 | 7.89E+01 | 4.69E+01 | 7.92E+01 | 7.94E+01 | |
Median | 1.34E+01 | 2.01E+01 | 2.32E+01 | 7.91E+01 | 4.69E+01 | 7.94E+01 | 8.00E+01 | |
Max | 1.75E+01 | 2.62E+01 | 2.54E+01 | 8.28E+01 | 5.68E+01 | 8.17E+01 | 8.23E+01 | |
Std | 4.26E+00 | 2.32E+00 | 1.12E+00 | 2.73E+00 | 6.35E+00 | 1.71E+00 | 2.08E+00 | |
8 | Min | 1.17E−27 | 2.78E+02 | 1.91E+01 | 1.36E+37 | 2.09E+09 | 6.08E+16 | 5.90E+39 |
Average | 3.87E−27 | 3.35E+02 | 2.55E+01 | 3.19E+61 | 2.08E+26 | 3.21E+62 | 1.79E+61 | |
Median | 3.31E−27 | 3.45E+02 | 2.51E+01 | 1.61E+54 | 1.50E+16 | 3.62E+56 | 1.13E+54 | |
Max | 1.00E−26 | 3.96E+02 | 3.35E+01 | 4.37E+62 | 2.48E+27 | 4.16E+63 | 3.00E+62 | |
Std | 1.94E−27 | 3.02E+01 | 4.05E+00 | 1.02E+62 | 6.51E+26 | 1.02E+63 | 6.76E+61 | |
9 | Min | 1.13E+01 | 1.89E+02 | 1.85E+02 | 5.56E+02 | 5.89E+02 | 5.86E+02 | 6.19E+02 |
Average | 2.23E+01 | 2.47E+02 | 2.38E+02 | 8.18E+02 | 8.12E+02 | 8.44E+02 | 8.02E+02 | |
Median | 2.11E+01 | 2.48E+02 | 2.40E+02 | 8.35E+02 | 7.87E+02 | 8.69E+02 | 8.00E+02 | |
Max | 3.59E+01 | 2.99E+02 | 3.12E+02 | 1.02E+03 | 1.19E+03 | 9.69E+02 | 9.65E+02 | |
Std | 7.52E+00 | 2.94E+01 | 2.97E+01 | 1.17E+02 | 1.58E+02 | 1.03E+02 | 9.82E+01 | |
10 | Min | 1.69E+01 | 1.24E+02 | 1.70E+01 | 2.78E+02 | 1.68E+02 | 2.99E+02 | 2.99E+02 |
Average | 4.37E+01 | 1.79E+02 | 2.17E+01 | 3.27E+02 | 2.29E+02 | 3.32E+02 | 3.36E+02 | |
Median | 4.28E+01 | 1.71E+02 | 2.17E+01 | 3.26E+02 | 2.21E+02 | 3.30E+02 | 3.43E+02 | |
Max | 7.86E+01 | 2.72E+02 | 2.74E+01 | 3.97E+02 | 3.24E+02 | 3.75E+02 | 3.61E+02 | |
Std | 1.40E+01 | 4.54E+01 | 3.00E+00 | 2.87E+01 | 3.88E+01 | 1.91E+01 | 1.79E+01 | |
11 | Min | 0.00E+00 | 0.00E+00 | 9.01E−09 | 1.19E−08 | 3.08E−06 | 9.33E−07 | 2.37E−06 |
Average | 0.00E+00 | 5.33E−16 | 2.18E−07 | 1.66E−02 | 3.65E−05 | 1.16E−02 | 2.61E−02 | |
Median | 0.00E+00 | 0.00E+00 | 2.07E−07 | 2.78E−03 | 3.17E−05 | 2.20E−03 | 7.51E−03 | |
Max | 0.00E+00 | 3.55E−15 | 5.40E−07 | 5.72E−02 | 1.00E−04 | 5.93E−02 | 9.28E−02 | |
Std | 0.00E+00 | 1.30E−15 | 1.27E−07 | 2.30E−02 | 2.54E−05 | 1.74E−02 | 3.25E−02 | |
12 | Min | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 |
Average | 0.00E+00 | 0.00E+00 | 9.86E−04 | 3.40E−05 | 2.15E−08 | 5.46E−05 | 8.01E−05 | |
Median | 0.00E+00 | 0.00E+00 | 2.22E−16 | 8.38E−07 | 7.27E−15 | 1.36E−08 | 1.37E−06 | |
Max | 0.00E+00 | 0.00E+00 | 9.86E−03 | 2.20E−04 | 3.32E−07 | 3.73E−04 | 4.43E−04 | |
Std | 0.00E+00 | 0.00E+00 | 3.04E−03 | 6.16E−05 | 7.59E−08 | 1.08E−04 | 1.41E−04 | |
13 | Min | 0.00E+00 | 4.42E+01 | 5.17E−01 | 2.48E+01 | 1.12E+01 | 1.93E+01 | 2.36E+01 |
Average | 5.08E−14 | 5.18E+01 | 7.40E−01 | 3.24E+01 | 1.69E+01 | 3.24E+01 | 3.20E+01 | |
Median | 5.41E−14 | 5.20E+01 | 6.87E−01 | 3.19E+01 | 1.63E+01 | 3.26E+01 | 3.20E+01 | |
Max | 6.59E−14 | 6.24E+01 | 1.09E+00 | 3.99E+01 | 2.20E+01 | 4.33E+01 | 4.02E+01 | |
Std | 1.25E−14 | 5.42E+00 | 1.58E−01 | 4.09E+00 | 2.93E+00 | 5.93E+00 | 4.81E+00 | |
14 | Min | 4.00E−01 | 4.00E+00 | 3.20E+00 | 2.82E+01 | 7.11E+00 | 2.78E+01 | 2.67E+01 |
Average | 4.72E−01 | 4.95E+00 | 3.73E+00 | 2.94E+01 | 7.96E+00 | 2.97E+01 | 2.94E+01 | |
Median | 5.00E−01 | 4.95E+00 | 3.73E+00 | 2.95E+01 | 7.91E+00 | 2.98E+01 | 2.96E+01 | |
Max | 6.00E−01 | 5.80E+00 | 4.60E+00 | 3.03E+01 | 8.82E+00 | 3.09E+01 | 3.09E+01 | |
Std | 5.34E−02 | 5.75E−01 | 4.19E−01 | 6.57E−01 | 3.96E−01 | 8.34E−01 | 1.11E+00 | |
15 | Min | 5.98E−23 | 3.48E+07 | 2.51E+07 | 1.77E+11 | 3.89E+07 | 1.58E+11 | 1.52E+11 |
Average | 9.00E−07 | 1.10E+08 | 3.92E+07 | 2.00E+11 | 9.02E+07 | 1.98E+11 | 2.01E+11 | |
Median | 1.71E−13 | 1.08E+08 | 3.94E+07 | 1.98E+11 | 8.62E+07 | 1.99E+11 | 2.02E+11 | |
Max | 2.03E−05 | 2.58E+08 | 5.53E+07 | 2.24E+11 | 1.62E+08 | 2.24E+11 | 2.28E+11 | |
Std | 4.00E−06 | 5.40E+07 | 8.46E+06 | 1.49E+10 | 3.03E+07 | 1.61E+10 | 1.86E+10 | |
16 | Min | − 1.96E+03 | 1.99E+07 | 1.29E+07 | 8.93E+10 | 2.00E+07 | 7.77E+10 | 7.54E+10 |
Average | − 1.93E+03 | 6.14E+07 | 2.22E+07 | 1.04E+11 | 3.15E+07 | 1.01E+11 | 1.03E+11 | |
Median | − 1.94E+03 | 5.21E+07 | 2.01E+07 | 1.05E+11 | 3.02E+07 | 1.03E+11 | 1.06E+11 | |
Max | − 1.86E+03 | 1.45E+08 | 3.52E+07 | 1.18E+11 | 4.37E+07 | 1.15E+11 | 1.18E+11 | |
Std | 2.94E+01 | 3.73E+07 | 6.58E+06 | 8.17E+09 | 6.65E+06 | 9.45E+09 | 1.15E+10 | |
17 | Min | 1.97E−11 | 4.26E−02 | 3.21E−02 | 3.51E+15 | 6.06E+03 | 1.17E+15 | 1.45E+15 |
Average | 7.20E−08 | 6.77E+00 | 1.34E−01 | 1.44E+17 | 1.51E+10 | 1.24E+17 | 3.22E+17 | |
Median | 3.50E−09 | 4.25E−01 | 1.17E−01 | 8.21E+16 | 3.15E+07 | 3.05E+16 | 7.71E+16 | |
Max | 1.33E−06 | 1.17E+02 | 3.57E−01 | 7.65E+17 | 2.99E+11 | 1.17E+18 | 2.11E+18 | |
Std | 2.63E−07 | 2.61E+01 | 8.34E−02 | 1.84E+17 | 6.67E+10 | 2.72E+17 | 6.05E+17 | |
18 | Min | 7.88E−03 | 6.43E−02 | 1.88E−01 | 8.56E+00 | 1.09E+00 | 9.84E+00 | 7.49E+00 |
Average | 1.44E−02 | 1.55E−01 | 2.41E−01 | 2.79E+01 | 1.95E+00 | 2.44E+01 | 2.54E+01 | |
Median | 1.37E−02 | 1.39E−01 | 2.31E−01 | 1.97E+01 | 1.85E+00 | 2.03E+01 | 1.99E+01 | |
Max | 2.44E−02 | 3.06E−01 | 3.04E−01 | 9.58E+01 | 3.36E+00 | 6.69E+01 | 5.99E+01 | |
Std | 3.69E−03 | 5.88E−02 | 3.25E−02 | 2.19E+01 | 6.32E−01 | 1.36E+01 | 1.46E+01 | |
19 | Min | 0.00E+00 | 1.32E−56 | 2.79E−15 | 8.92E−71 | 7.39E−11 | 2.12E−70 | 4.31E−70 |
Average | 0.00E+00 | 3.52E−55 | 3.04E−13 | 5.20E−69 | 3.42E−09 | 9.46E−69 | 8.69E−69 | |
Median | 0.00E+00 | 2.91E−55 | 1.33E−13 | 1.82E−69 | 2.87E−09 | 5.90E−69 | 4.19E−69 | |
Max | 0.00E+00 | 8.92E−55 | 1.44E−12 | 2.70E−68 | 1.22E−08 | 4.12E−68 | 4.24E−68 | |
Std | 0.00E+00 | 2.62E−55 | 4.08E−13 | 7.18E−69 | 3.10E−09 | 1.11E−68 | 1.07E−68 | |
20 | Min | 0.00E+00 | 0.00E+00 | 6.90E−14 | 5.75E−09 | 8.47E−12 | 4.16E−10 | 1.63E−09 |
Average | 0.00E+00 | 0.00E+00 | 5.35E−12 | 7.23E−06 | 6.56E−10 | 4.12E−06 | 3.77E−06 | |
Median | 0.00E+00 | 0.00E+00 | 6.09E−12 | 7.17E−07 | 4.39E−10 | 2.91E−07 | 1.67E−06 | |
Max | 0.00E+00 | 0.00E+00 | 1.48E−11 | 5.08E−05 | 3.45E−09 | 3.29E−05 | 2.78E−05 | |
Std | 0.00E+00 | 0.00E+00 | 4.14E−12 | 1.56E−05 | 8.42E−10 | 8.39E−06 | 6.28E−06 | |
21 | Min | 0.00E+00 | 0.00E+00 | 4.63E−13 | 1.57E−05 | 2.68E−10 | 1.98E−05 | 1.97E−05 |
Average | 4.49E−27 | 2.84E−02 | 1.37E−10 | 2.11E−03 | 1.05E−08 | 2.62E−03 | 1.50E−03 | |
Median | 0.00E+00 | 8.40E−03 | 9.98E−11 | 1.29E−03 | 6.08E−09 | 8.65E−04 | 3.67E−04 | |
Max | 1.49E−25 | 1.34E−01 | 5.87E−10 | 1.31E−02 | 7.05E−08 | 1.16E−02 | 9.15E−03 | |
Std | 2.32E−26 | 4.30E−02 | 1.49E−10 | 2.87E−03 | 1.57E−08 | 3.55E−03 | 2.21E−03 | |
22 | Min | 0.00E+00 | 0.00E+00 | 1.72E−15 | 0.00E+00 | 1.81E−10 | 0.00E+00 | 0.00E+00 |
Average | 0.00E+00 | 0.00E+00 | 1.91E−13 | 3.27E−02 | 3.42E−09 | 3.27E−02 | 6.55E−02 | |
Median | 0.00E+00 | 0.00E+00 | 8.36E−14 | 0.00E+00 | 1.58E−09 | 0.00E+00 | 0.00E+00 | |
Max | 0.00E+00 | 0.00E+00 | 1.41E−12 | 2.18E−01 | 2.73E−08 | 2.18E−01 | 2.18E−01 | |
Std | 0.00E+00 | 0.00E+00 | 3.30E−13 | 8.00E−02 | 5.95E−09 | 8.00E−02 | 1.03E−01 | |
23 | Min | − 1.00E+00 | − 1.00E+00 | − 1.00E+00 | − 1.00E+00 | − 1.00E+00 | − 1.00E+00 | − 1.00E+00 |
Average | − 1.00E+00 | − 1.00E+00 | − 1.00E+00 | − 8.68E−01 | − 1.00E+00 | − 8.44E−01 | − 9.25E−01 | |
Median | − 1.00E+00 | − 1.00E+00 | − 1.00E+00 | − 9.28E−01 | − 1.00E+00 | − 1.00E+00 | − 9.96E−01 | |
Max | − 1.00E+00 | − 1.00E+00 | − 1.00E+00 | − 3.86E−01 | − 1.00E+00 | − 2.39E−01 | − 3.64E−01 | |
Std | 0.00E+00 | 1.52E−14 | 1.50E−14 | 1.75E−01 | 2.49E−10 | 2.64E−01 | 1.54E−01 | |
24 | Min | 0.00E+00 | 2.28E−57 | 4.77E−16 | 3.84E−71 | 2.59E−12 | 1.08E−72 | 1.68E−71 |
Average | 0.00E+00 | 2.83E−56 | 2.85E−14 | 8.03E−70 | 1.53E−10 | 7.89E−70 | 6.76E−70 | |
Median | 0.00E+00 | 2.24E−56 | 1.40E−14 | 4.32E−70 | 1.05E−10 | 4.08E−70 | 2.47E−70 | |
Max | 0.00E+00 | 7.12E−56 | 2.04E−13 | 3.99E−69 | 7.06E−10 | 3.52E−69 | 3.12E−69 | |
Std | 0.00E+00 | 2.14E−56 | 4.79E−14 | 1.02E−69 | 1.65E−10 | 1.00E−69 | 9.02E−70 | |
25 | Min | 4.44E−07 | 6.17E−02 | 1.06E−06 | 5.43E−03 | 1.27E−06 | 1.27E−02 | 7.83E−04 |
Average | 2.29E−03 | 1.39E+00 | 2.31E−02 | 1.92E+00 | 2.01E−02 | 8.24E−01 | 1.66E+00 | |
Median | 8.54E−05 | 8.35E−01 | 2.30E−02 | 7.11E−01 | 4.92E−03 | 4.27E−01 | 7.83E−01 | |
Max | 3.41E−02 | 7.87E+00 | 6.88E−02 | 6.46E+00 | 7.77E−02 | 3.98E+00 | 5.92E+00 | |
Std | 6.36E−03 | 1.93E+00 | 2.14E−02 | 2.12E+00 | 2.59E−02 | 1.10E+00 | 1.94E+00 |
Appendix Β
The aim of this Appendix is to provide a simplified Matlab code of the proposed FFO.






Rights and permissions
About this article
Cite this article
Zervoudakis, K., Tsafarakis, S. A global optimizer inspired from the survival strategies of flying foxes. Engineering with Computers 39, 1583–1616 (2023). https://doi.org/10.1007/s00366-021-01554-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00366-021-01554-w