Abstract
Parametric fur is a powerful tool for content creation in computer graphics. However, setting parameters to realize the desired result is difficult. To address this problem, we propose a method to automatically estimate appropriate parameters from an image. We formulate the process as an optimization problem wherein the system searches for parameters such that the appearance of the rendered parametric fur is as similar as possible to the appearance of the real fur. In each optimization step, we render an image using an off-the-shelf fur renderer and measure image similarity using a pre-trained deep convolutional neural network model. We demonstrate that the proposed method can estimate fur parameters appropriately for a wide range of fur types.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Andersen, T.G., Falster, V., Frisvad, J.R., Christensen, N.J.: Hybrid fur rendering: combining volumetric fur with explicit hair strands. Vis. Comput. 32(6), 739–749 (2016). https://doi.org/10.1007/s00371-016-1252-x
Autodesk Inc.: Autodesk maya. https://www.autodesk.com/products/maya (1998–2020)
Beeler, T., Bickel, B., Noris, G., Beardsley, P., Marschner, S., Sumner, R.W., Gross, M.: Coupled 3D reconstruction of sparse facial hair and skin. ACM Trans. Graph. 31(4), 117:1–117:10 (2012). https://doi.org/10.1145/2185520.2185613
Chollet, F., et al.: Keras. https://keras.io (2015)
Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43 (1995). https://doi.org/10.1109/MHS.1995.494215
Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 28, pp. 262–270. Curran Associates, Inc. (2015)
Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2414–2423 (2016). https://doi.org/10.1109/CVPR.2016.265
Hansen, N.: The CMA evolution strategy: a tutorial. CoRR abs/1604.00772 (2016). arXiv:1604.00772
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Computer Vision–ECCV 2016, pp. 694–711. Springer International Publishing, Berlin (2016)
Lengyel, J., Praun, E., Finkelstein, A., Hoppe, H.: Real-time fur over arbitrary surfaces. In: Proceedings of the 2001 Symposium on Interactive 3D Graphics, I3D ’01, pp. 227–232. ACM (2001). https://doi.org/10.1145/364338.364407
Loper, M.M., Black, M.J.: Opendr: an approximate differentiable renderer. In: Computer Vision – ECCV 2014, pp. 154–169. Springer International Publishing, Berlin (2014)
Luo, L., Li, H., Rusinkiewicz, S.: Structure-aware hair capture. ACM Trans. Graph. 32(4), 76:1–76:12 (2013). https://doi.org/10.1145/2461912.2462026
Paris, S., Briceño, H.M., Sillion, F.X.: Capture of hair geometry from multiple images. ACM Trans. Graph. 23(3), 712–719 (2004). https://doi.org/10.1145/1015706.1015784
Paris, S., Chang, W., Kozhushnyan, O.I., Jarosz, W., Matusik, W., Zwicker, M., Durand, F.: Hair photobooth: geometric and photometric acquisition of real hairstyles. ACM Trans. Graph. 27(3), 30:1–30:9 (2008). https://doi.org/10.1145/1360612.1360629
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks (2015)
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., Fei-Fei, L.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a review of bayesian optimization. Proc. IEEE 104(1), 148–175 (2016). https://doi.org/10.1109/JPROC.2015.2494218
Shi, T., Yuan, Y., Fan, C., Zou, Z., Shi, Z., Liu, Y.: Face-to-parameter translation for game character auto-creation. In: Proceedings of the IEEE International Conference on Computer Vision 2019 (pp. 161-170) (2019)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR arXiv:1409.1556 (2014)
Wei, Y., Ofek, E., Quan, L., Shum, H.Y.: Modeling hair from multiple views. ACM Trans. Graph. 24(3), 816–820 (2005). https://doi.org/10.1145/1073204.1073267
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000). https://doi.org/10.1109/34.888718
Zhao, S., Jakob, W., Marschner, S., Bala, K.: Building volumetric appearance models of fabric using micro CT imaging. In: ACM SIGGRAPH 2011 Papers, SIGGRAPH ’11. Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/1964921.1964939
Acknowledgements
We would like to thank Zheyuan Cai for helping on the preliminary experiment.
Funding
This work was partially supported by JSPS KAKENHI (Grant Number JP17H00752 and 19J13492). Seung-Tak Noh is funded by JSPS Research Fellowships for Young Scientists.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Supplementary material 1 (mp4 31710 KB)
Fur parameters
Fur parameters
The selected fur parameters are listed in Table 1. We selected 25 parameters from 89 parameters in Maya Fur and converted them to normalized space. In our experiment, we fixed the other 64 parameters as default values.
Rights and permissions
About this article
Cite this article
Noh, ST., Takahashi, K., Adachi, M. et al. Parametric fur from an image. Vis Comput 37, 1129–1138 (2021). https://doi.org/10.1007/s00371-020-01857-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-020-01857-x