Skip to main content

Advertisement

Log in

Birman–Wenzl–Murakami algebra, topological parameter and Berry phase

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a 3 × 3-matrix representation of Birman–Wenzl–Murakami (BWM) algebra has been presented. Based on which, unitary matrices A(θ, φ 1, φ 2) and B(θ, φ 1, φ 2) are generated via Yang–Baxterization approach. A Hamiltonian is constructed from the unitary B(θ, φ) matrix. Then we study Berry phase of the Yang–Baxter system, and obtain the relationship between topological parameter and Berry phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Yang C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312 (1967)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Yang C.N.: S matrix for the one-dimensional N body problem with repulsive or attractive delta function interaction. Phys. Rev. 168, 1920 (1968)

    Article  ADS  Google Scholar 

  3. Baxter R.J.: It Exactly Solved Models in Statistical Mechanics. Academic Press, New York (1982)

    MATH  Google Scholar 

  4. Baxter R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193 (1972)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Temperley H.N.V., Lieb E.H.: Relations between the ’Percolation’ and ’Colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ’Percolation’ problem. Proc. R. Soc. London. A. 322, 251 (1971)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Korepin V.E., Bogoliubov N.M., Izergin A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  7. Kauffman L.H.: Knots and Physics. World Scientific Publ Co Ltd, Singapore (1991)

    Book  MATH  Google Scholar 

  8. Yang, C.N., Ge, M.L., et al.: Braid Group, Knot Theory and Statistical Mechanics (I and II). World Scientific Publ Co Ltd, Singapore (1989) and (1994)

  9. Baxter R.J.: The inversion relation method for some two-dimensional exactly solved models in lattice statistics. J. Stat. Phys. 28, 1 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  10. Owczarek A.L., Baxter R.J.: A class of interaction-round-a-face models and its equivalence with an ice-type model. J. Stat. Phys. 49, 1093 (1987)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Batchelor M.T., Barber M.N.: Spin-s quantum chains and temperley–Lieb algebras. J. Phys. A. 23, L15 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Batchelor M.T., Kuniba A.: Temperley–Lieb lattice models arising from quantum groups. J. Phys. A. 24, 2599 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Li Y.Q.: Yang Baxterization. J. Math. Phys. 34, 2 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Kauffman L.H., Lomonaco S.J. Jr: Braiding operators are universal quantum gates. New J. Phys. 6, 413 (2004)

    Google Scholar 

  15. Kitaev A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Franko J., Rowell E.C., Wang Z.: Extraspecial 2-groups and images of braid group representations. J. Knot. Theory Ramif. 15, 413 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen J.L., Xue K., Ge M.L.: Braiding transformation, entanglement swapping, and Berry phase in entanglement space. Phys. Rev. A. 76, 042324 (2007)

    Article  ADS  Google Scholar 

  18. Chen J.L., Xue K., Ge M.L.: Berry phase and quantum criticality in Yang–Baxter systems. Ann. Phys. 323, 2614 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Sun C.F. et al.: Thermal entanglement in the two-qubit systems constructed from the Yang–Baxter R-matrix. Int. J. Quantum Inf. 7, 879 (2009)

    Article  MATH  Google Scholar 

  20. Wadati M., Deguchi T., Akutsu Y.: Exactly solvable models and knot theory. Phys. Rep. 180, 247 (1989)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. Birman J., Wenzl H.: Braids, link polynomials and a new algebra. Trans. AMS. 313, 249 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Murakami J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 24, 745 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Abramsky, S.: Temperley–Lieb algebra: from knot theory to logic and computation via quantum mechanics. e-print quant-ph/0910.2737

  24. Berry M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A. 392, 45 (1984)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  25. Aharonov Y., Anandan J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  26. Sjöqvist E., Pati A.K., Ekert A., Anandan J.S., Ericsson M., Oi D.K.L., Vedral V.: Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845 (2000)

    Article  ADS  Google Scholar 

  27. Samuel J., Bhandari R.: General setting for Berry’s phase. Phys. Rev. Lett. 60, 2339 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  28. Tong D.M., Sjöqvist E., Kwek L.C., Oh C.H.: Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 93, 080405 (2004)

    Article  ADS  Google Scholar 

  29. Wilczek F., Zee A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  30. Korepin V.E., Wu A.C.T.: Adiabatic transport properties and BERRYS phase in Heisenberg-Ising ring. Int. J. Mod. Phys. B. 5, 497 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  31. Appelt S., Wäckerle G., Mehring M.: Deviation from Berrys adiabatic geometric phase in a 131Xe nuclear gyroscope. Phys. Rev. Lett. 72, 3921 (1994)

    Article  ADS  Google Scholar 

  32. Jones J., Vedral V., Ekert A., Castagnoli G.: Geometric quantum computation using nuclear magnetic resonance. Nature. 403, 869 (2000)

    Article  ADS  Google Scholar 

  33. Duan L.M., Cirac J.I., Zoller P.: Geometric manipulation of trapped ions for quantum computation. Science. 292, 1695 (2001)

    Article  ADS  Google Scholar 

  34. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  MATH  ADS  Google Scholar 

  35. Ekert A., Ericsson M., Hayden P., Inamori H., Jones J.A., Oi D.K.L., Vedral V.: Geometric quantum computation. J. Mod. Opt. 47, 2501 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. Leibfried D. et al.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature. 422, 412 (2003)

    Article  ADS  Google Scholar 

  37. Leek P.J. et al.: Observation of Berry’s phase in a solid-state qubit. science. 318, 1889 (2007)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  38. Hu S.W., Xue K., Ge M.L.: Optical simulation of the Yang–Baxter eqnarray. Phys. Rev. A. 78, 022319 (2008)

    Article  ADS  Google Scholar 

  39. Nayak C., Simon S.H., Stern A., Freedman M., Sarma S.D.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  40. Hikami K.: Skein theory and topological quantum registers: braiding matrices and topological entanglement entropy of non-Abelian quantum Hall states. Ann. Phys. 323, 1729 (1987)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  41. Cheng Y., Ge M.L., Xue K.: Yang–Baxterization of braid group representations. Commun. Math. Phys. 136, 195 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  42. Ge M.L., Xue K.: Trigonometric Yang–Baxterization of colored R-matrix. J. Phys. A: Math. 26, 281 (1993)

    Article  MATH  ADS  Google Scholar 

  43. Jones V.F.R.: On a certain value of the Kauffman polynomial. Commun. Math. Phys. 125, 459 (1987)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  44. Wang G.C. et al.: Temperley–Lieb algebra, Yang–Baxterization and universal gate. Quantum Inf. Process. 9, 699 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. Pfeifer W.: The Lie Algebras SU(N), An Introduction. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, C., Xue, K., Gou, L. et al. Birman–Wenzl–Murakami algebra, topological parameter and Berry phase. Quantum Inf Process 11, 1765–1773 (2012). https://doi.org/10.1007/s11128-011-0331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0331-1

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy