Abstract
In this paper, a 3 × 3-matrix representation of Birman–Wenzl–Murakami (BWM) algebra has been presented. Based on which, unitary matrices A(θ, φ 1, φ 2) and B(θ, φ 1, φ 2) are generated via Yang–Baxterization approach. A Hamiltonian is constructed from the unitary B(θ, φ) matrix. Then we study Berry phase of the Yang–Baxter system, and obtain the relationship between topological parameter and Berry phase.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Yang C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312 (1967)
Yang C.N.: S matrix for the one-dimensional N body problem with repulsive or attractive delta function interaction. Phys. Rev. 168, 1920 (1968)
Baxter R.J.: It Exactly Solved Models in Statistical Mechanics. Academic Press, New York (1982)
Baxter R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193 (1972)
Temperley H.N.V., Lieb E.H.: Relations between the ’Percolation’ and ’Colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ’Percolation’ problem. Proc. R. Soc. London. A. 322, 251 (1971)
Korepin V.E., Bogoliubov N.M., Izergin A.G.: Quantum Inverse Scattering Method and Correlation Functions. Cambridge University Press, Cambridge (1993)
Kauffman L.H.: Knots and Physics. World Scientific Publ Co Ltd, Singapore (1991)
Yang, C.N., Ge, M.L., et al.: Braid Group, Knot Theory and Statistical Mechanics (I and II). World Scientific Publ Co Ltd, Singapore (1989) and (1994)
Baxter R.J.: The inversion relation method for some two-dimensional exactly solved models in lattice statistics. J. Stat. Phys. 28, 1 (1982)
Owczarek A.L., Baxter R.J.: A class of interaction-round-a-face models and its equivalence with an ice-type model. J. Stat. Phys. 49, 1093 (1987)
Batchelor M.T., Barber M.N.: Spin-s quantum chains and temperley–Lieb algebras. J. Phys. A. 23, L15 (1990)
Batchelor M.T., Kuniba A.: Temperley–Lieb lattice models arising from quantum groups. J. Phys. A. 24, 2599 (1991)
Li Y.Q.: Yang Baxterization. J. Math. Phys. 34, 2 (1993)
Kauffman L.H., Lomonaco S.J. Jr: Braiding operators are universal quantum gates. New J. Phys. 6, 413 (2004)
Kitaev A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)
Franko J., Rowell E.C., Wang Z.: Extraspecial 2-groups and images of braid group representations. J. Knot. Theory Ramif. 15, 413 (2006)
Chen J.L., Xue K., Ge M.L.: Braiding transformation, entanglement swapping, and Berry phase in entanglement space. Phys. Rev. A. 76, 042324 (2007)
Chen J.L., Xue K., Ge M.L.: Berry phase and quantum criticality in Yang–Baxter systems. Ann. Phys. 323, 2614 (2008)
Sun C.F. et al.: Thermal entanglement in the two-qubit systems constructed from the Yang–Baxter R-matrix. Int. J. Quantum Inf. 7, 879 (2009)
Wadati M., Deguchi T., Akutsu Y.: Exactly solvable models and knot theory. Phys. Rep. 180, 247 (1989)
Birman J., Wenzl H.: Braids, link polynomials and a new algebra. Trans. AMS. 313, 249 (1989)
Murakami J.: The Kauffman polynomial of links and representation theory. Osaka J. Math. 24, 745 (1987)
Abramsky, S.: Temperley–Lieb algebra: from knot theory to logic and computation via quantum mechanics. e-print quant-ph/0910.2737
Berry M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A. 392, 45 (1984)
Aharonov Y., Anandan J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593 (1987)
Sjöqvist E., Pati A.K., Ekert A., Anandan J.S., Ericsson M., Oi D.K.L., Vedral V.: Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845 (2000)
Samuel J., Bhandari R.: General setting for Berry’s phase. Phys. Rev. Lett. 60, 2339 (1988)
Tong D.M., Sjöqvist E., Kwek L.C., Oh C.H.: Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 93, 080405 (2004)
Wilczek F., Zee A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111 (1984)
Korepin V.E., Wu A.C.T.: Adiabatic transport properties and BERRYS phase in Heisenberg-Ising ring. Int. J. Mod. Phys. B. 5, 497 (1991)
Appelt S., Wäckerle G., Mehring M.: Deviation from Berrys adiabatic geometric phase in a 131Xe nuclear gyroscope. Phys. Rev. Lett. 72, 3921 (1994)
Jones J., Vedral V., Ekert A., Castagnoli G.: Geometric quantum computation using nuclear magnetic resonance. Nature. 403, 869 (2000)
Duan L.M., Cirac J.I., Zoller P.: Geometric manipulation of trapped ions for quantum computation. Science. 292, 1695 (2001)
Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Ekert A., Ericsson M., Hayden P., Inamori H., Jones J.A., Oi D.K.L., Vedral V.: Geometric quantum computation. J. Mod. Opt. 47, 2501 (2000)
Leibfried D. et al.: Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature. 422, 412 (2003)
Leek P.J. et al.: Observation of Berry’s phase in a solid-state qubit. science. 318, 1889 (2007)
Hu S.W., Xue K., Ge M.L.: Optical simulation of the Yang–Baxter eqnarray. Phys. Rev. A. 78, 022319 (2008)
Nayak C., Simon S.H., Stern A., Freedman M., Sarma S.D.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008)
Hikami K.: Skein theory and topological quantum registers: braiding matrices and topological entanglement entropy of non-Abelian quantum Hall states. Ann. Phys. 323, 1729 (1987)
Cheng Y., Ge M.L., Xue K.: Yang–Baxterization of braid group representations. Commun. Math. Phys. 136, 195 (1991)
Ge M.L., Xue K.: Trigonometric Yang–Baxterization of colored R-matrix. J. Phys. A: Math. 26, 281 (1993)
Jones V.F.R.: On a certain value of the Kauffman polynomial. Commun. Math. Phys. 125, 459 (1987)
Wang G.C. et al.: Temperley–Lieb algebra, Yang–Baxterization and universal gate. Quantum Inf. Process. 9, 699 (2009)
Pfeifer W.: The Lie Algebras SU(N), An Introduction. Birkhäuser, Basel (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhou, C., Xue, K., Gou, L. et al. Birman–Wenzl–Murakami algebra, topological parameter and Berry phase. Quantum Inf Process 11, 1765–1773 (2012). https://doi.org/10.1007/s11128-011-0331-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-011-0331-1