Skip to main content

Advertisement

Log in

Quantum speed limit in the thermal spin-boson system with and without tunneling term

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study the spin-bosonic model, with and without tunneling terms, in detail. The spin-bosonic model without tunneling is studied by using the thermofield dynamics approach. Indeed, by considering temperature, we show that environmental states, while they become entangled with system, approach thermal coherent states with different phases. In addition, by considering the tunneling term, we study the interplay of the environmental cut-off frequency as well as the impacts of environmental temperature on the quantum speed limit in both cases, i.e., spin-boson system with and without tunneling term. In these studies, we indicate temperature play more important role in compare with cut-off frequency to control the quantumness of a spin system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    ADS  Google Scholar 

  2. Costi, T., Kieffer, C.: Equilibrium dynamics of the dissipative two-state system. Phys. Rev. Lett. 76, 1683 (1996)

    ADS  Google Scholar 

  3. Egger, R., Mak, C.: Low-temperature dynamical simulation of spin-boson systems. Phys. Rev. B 50, 15210 (1994)

    ADS  Google Scholar 

  4. Dehdashti, S., Mahdifar, A., Harouni, M.B., Roknizadeh, R.: Decoherence of spin-deformed bosonic model. Ann. Phys. 334, 321 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Dehdashti, S., Harouni, M.B., Mahdifar, A., Roknizadeh, R.: Deformed Weyl–Heisenberg algebra and quantum decoherence effect. Laser Phys. 24, 055203 (2014)

    ADS  Google Scholar 

  6. Dehdashti, S., et al.: Stability of two interacting entangled spins interacting with a thermal environment. Quantum Inf. Comput. 16, 1365 (2016)

    MathSciNet  Google Scholar 

  7. Zurek, W.H.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516 (1981)

    ADS  MathSciNet  Google Scholar 

  8. Zurek, W.H., Habib, S., Paz, J.P.: Coherent states via decoherence. Phys. Rev. Lett. 70, 1187 (1993)

    ADS  Google Scholar 

  9. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  10. Schlosshauer, M.A.: Decoherence: And the Quantum-to-Classical Transition. Springer, Berlin (2007)

    Google Scholar 

  11. Pachon, L.A., Brumer, P.: Physical basis for long-lived electronic coherence in photosynthetic light-harvesting systems. J. Phys. Chem. Lett. 2, 2728 (2011)

    Google Scholar 

  12. Fleming, G.R., Scholes, G.D., Cheng, Y.-C.: Quantum effects in biology. Procedia Chem. 3, 38 (2011)

    Google Scholar 

  13. Huelga, S.F., Plenio, M.: Quantum dynamics of bio-molecular systems in noisy environments. Procedia Chem. 3, 248 (2011)

    Google Scholar 

  14. Shi, Q., Zhu, L., Chen, L.: Quantum rate dynamics for proton transfer reaction in a model system: effect of the rate promoting vibrational mode. J. Chem. Phys. 135, 044505 (2011)

    ADS  Google Scholar 

  15. Lei, C.U., Zhang, W.-M.: Decoherence suppression of open quantum systems through a strong coupling to non-Markovian reservoirs. Phys. Rev. A 84, 052116 (2011)

    ADS  Google Scholar 

  16. Zhang, J., Liu, Y.-X., Zhang, W.-M., Wu, L.-A., Wu, R.-B., Tarn, T.-J.: Deterministic chaos can act as a decoherence suppressor. Phys. Rev. B 84, 214304 (2011)

    ADS  Google Scholar 

  17. Costi, T., McKenzie, R.H.: Entanglement between a qubit and the environment in the spin-boson model. Phys. Rev. A 68, 034301 (2003)

    ADS  Google Scholar 

  18. Uchiyama, C., Aihara, M.: Multipulse control of decoherence. Phys. Rev. A 66, 032313 (2002)

    ADS  Google Scholar 

  19. Weiss, U.: Quantum Dissipative Systems, vol. 10. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  20. Pöschl, G., Teller, E.: Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Z. Phys. 83, 143 (1933)

    ADS  MATH  Google Scholar 

  21. Gilmore, J.B., McKenzie, R.H.: Criteria for quantum coherent transfer of excitations between chromophores in a polar solvent. Chem. Phys. Lett. 421, 266 (2006)

    ADS  Google Scholar 

  22. Tirandaz, A., Ghahramani, F.T., Shafiee, A.: Emergence of molecular chirality due to chiral interactions in a biological environment. J. Biol. Phys. 40, 369 (2014)

    Google Scholar 

  23. Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (USSR) 9, 1 (1945)

    Google Scholar 

  24. Fleming, G.N.: A unitarity bound on the evolution of nonstationary states. Il Nuovo Cimento A (1971-1996) 16, 232 (1973)

    Google Scholar 

  25. Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Vaidman, L.: Minimum time for the evolution to an orthogonal quantum state. Am. J. Phys. 60, 182 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188 (1998)

    Google Scholar 

  28. Levitin, L.B., Toffoli, T.: Fundamental limit on the rate of quantum dynamics: the unified bound is tight. Phys. Rev. Lett. 103, 160502 (2009)

    ADS  Google Scholar 

  29. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    ADS  Google Scholar 

  30. Lloyd, S.: Nature 406, 1047 (2000)

    ADS  Google Scholar 

  31. Lloyd, S.: Computational capacity of the universe. Phys. Rev. Lett. 88, 237901 (2002)

    ADS  Google Scholar 

  32. Caneva, T., et al.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)

    ADS  Google Scholar 

  33. Zhang, Y.-J., Han, W., Xia, Y.-J., Cao, J.-P., Fan, H.: Quantum speed limit for arbitrary initial states. Sci. Rep. 4, 1–6 (2014)

    Google Scholar 

  34. Dehdashti, S., Harouni, M.B., Mirza, B., Chen, H.: Decoherence speed limit in the spin-deformed boson model. Phys. Rev. A 91, 022116 (2015)

    ADS  Google Scholar 

  35. Stamp, P.C.: The decoherence puzzle. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 37, 467 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012)

    Google Scholar 

  38. Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)

    ADS  Google Scholar 

  39. del Campo, A., Egusquiza, I., Plenio, M., Huelga, S.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013)

    Google Scholar 

  40. Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)

    ADS  Google Scholar 

  41. Audenaert, K.M.: Comparisons between quantum state distinguishability measures. Quantum Inf. Comput. 14, 31 (2014)

    MathSciNet  Google Scholar 

  42. Khanna, F. C., Malbouisson, A. P., Malbouisson, J., Santana, A. E.: Thermal quantum field theory: algebraic aspects and applications. In: Ch. 12, Thermal Quantum Field Theory: Algebraic Aspects and Applications. World Scientific Books, Singapore (2009)

  43. Bagheri, H., Mahdifar, A.: Thermal nonlinear coherent states on a flat space and on a sphere. J. Math. Phys. 54, 052104 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Barnett, S., Knight, P.: Thermofield analysis of squeezing and statistical mixtures in quantum optics. J. Opt. Soc. Am. B 2, 467 (1985)

    ADS  Google Scholar 

  45. Mann, A., Revzen, M.: Thermal coherent states. Phys. Lett. A 134, 273 (1989)

    ADS  MathSciNet  Google Scholar 

  46. Chaturvedi, S., Sandhya, R., Srinivasan, V., Simon, R.: Thermal counterparts of nonclassical states in quantum optics. Phys. Rev. A 41, 3969 (1990)

    ADS  MathSciNet  Google Scholar 

  47. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  48. Dehdashti, S., Mahdifar, A., Roknizadeh, R.: Coherent state of \(\alpha \)-deformed Weyl–Heisenberg algebra. Int. J. Geom. Methods Mod. Phys. 10, 1350014 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge Mr. Joseph Bass, University of North Florida (UNF), for some useful discussions and editing of this paper. M. B. H., A. M. and B. M. wishes to thank The Office of Graduate Studies of the University of Isfahan, Shahrekord University and Isfahan University of Technology for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Yasar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Born Markov master equation for the spin-boson model

Appendix: Born Markov master equation for the spin-boson model

We assume that the central spin system moves in a symmetrical double-well potential, which lead to consider \(\omega _{0}=0\). Hence, the master equation of spin-boson system is obtained as [9]:

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho }_{S}(t)= & {} -i[\hat{H},\hat{\rho }_{S}]-\int _{0}^{\infty } \mathrm{d}\tau \Big \{ \nu (\tau ) [\hat{\sigma }_{z},[\hat{\sigma }_{z}(-\tau ),\hat{\rho }_{S}]]\nonumber \\&-i\eta ( \tau ) [\hat{\sigma }_{z}, \{ \hat{\sigma }_{z}(-\tau ),\hat{\rho }_{S}\}]\Big \}, \end{aligned}$$
(A1)

in which the noise kernel \(\nu (\tau )\) and the dissipation one \(\eta (\tau )\) are respectively defined by

$$\begin{aligned} \nu (\tau )= & {} \int _{0}^{\infty } \mathrm{\mathrm{d}}\omega J(\omega ) \coth \left[ \frac{\omega }{2k_{B}T}\right] \cos \left( \omega \tau \right) , \end{aligned}$$
(A2)
$$\begin{aligned} \eta (\tau )= & {} \int _{0}^{\infty } \mathrm{d}\omega J(\omega ) \sin \left( \omega \tau \right) . \end{aligned}$$
(A3)

By rewriting the relation (A1), we can obtain

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}\hat{\rho }_{S}(t)= & {} -i[\hat{H}_{S}^{\prime },\hat{\rho }_{S}]-\tilde{\gamma }\{\sigma _{x},\rho _{S} \}-\tilde{D}[\hat{\sigma }_{z},[\hat{\sigma }_{z},\hat{\rho }_{S}]]\nonumber \\&-\zeta \hat{\sigma }_{z} \hat{\rho }_{S} \hat{\sigma }_{y}-\zeta ^{*} \hat{\sigma }_{y} \hat{\rho }_{S}\hat{\sigma }_{z}, \end{aligned}$$
(A4)

in which the re-normalized Lamb-shifted spin system Hamiltonian is given by \(\hat{H}^{\prime }=\left( -\frac{1}{2}\Delta -\tilde{f}\right) \hat{\sigma }_{x} \); the normal-diffusion coefficient definition \(\tilde{D}\), is achieved by

$$\begin{aligned} \tilde{D}= \int _{0}^{\infty } \mathrm{d}\tau \nu (\tau ) \cos \left( \omega \tau \right) , \end{aligned}$$
(A5)

and \(\zeta =\tilde{f}+i\tilde{\gamma }\) is defined according to the anomalous-diffusion coefficient \(\tilde{f}\) and damping coefficient \(\tilde{\gamma }\) which are respectively defined as

$$\begin{aligned} \tilde{f}= & {} \int _{0}^{\infty } \mathrm{d} \tau \nu (\tau ) \sin \left( \omega \tau \right) , \end{aligned}$$
(A6)
$$\begin{aligned} \tilde{\gamma }= & {} \int _{0}^{\infty } \mathrm{d} \tau \eta (\tau ) \sin \left( \omega \tau \right) . \end{aligned}$$
(A7)

Hence, by considering the density matrix as \(\rho _{S}=r_{0}(t)\sigma _{0}+ \sum _{i=1}^{3}r_{i}(t) \sigma _{i}\), we can obtain the dynamical equations as

$$\begin{aligned} \dot{r}_{0}= & {} 0, \quad \dot{r}_{x}=-2\tilde{\gamma }-4Dr_{x},\nonumber \\ \dot{r}_{y}= & {} (\Delta _{0}-4 \tilde{f})r_{z}-4D r_{y}, \quad \dot{r}_{z}=-\Delta _{0} r_{y}. \end{aligned}$$
(A8)

Now, by using the initial conditions of the spin system, we obtain:

$$\begin{aligned} \rho _{S}(t)=\left( \begin{array}{cc} \rho _{11} &{} \rho _{12}\\ \rho _{12}^{*} &{} \rho _{22} \end{array}\right) , \end{aligned}$$
(A9)

in which

$$\begin{aligned}&\rho _{11}= \frac{1}{2}+ \frac{1}{4 \tilde{f}-\Delta }\left( 2\varTheta -e^{-2Dt}\left( 2\varTheta \cosh \left[ \varTheta t\right] -2D\cosh \left[ \varTheta t\right] \right) \right) ,\\&\rho _{22}=\frac{1}{2}- \frac{1}{4 \tilde{f}-\Delta }\left( 2\varTheta -e^{-2Dt}\left( 2\varTheta \cosh \left[ \varTheta t\right] -2D\cosh \left[ \varTheta t\right] \right) \right) , \end{aligned}$$

with \(\varTheta =\root \of {4D^{2}-\Delta _{0}^{2}+4\tilde{f}\Delta _{0}}\), and \(\rho _{12}\) is given by the following relation:

$$\begin{aligned} \rho _{12}=\frac{1}{2}-e^{-2 D t} \left( \left( 1+\frac{\tilde{\gamma }}{D}\right) \sinh \left[ 2 D t\right] +i \sinh \left[ \varTheta t\right] \right) . \end{aligned}$$

Also, by using the spectral density, the normal-diffusion and the damping coefficient are respectively given by \( D=\frac{\pi }{2}J(\Delta _{0}) \coth \left[ \frac{\Delta _{0}}{2 k_{B}T}\right] \) and \(\tilde{\gamma }=\frac{\pi }{2}J(\Delta _{0}) \); moreover, in the regime in which only the second-ordered approximation of \(1/ \varLambda \) is valid, i.e., \(\varLambda \gg 1\) and therefore the spectral density is given by \(J(\omega )\approx 4J_{0} \omega \left( 1-\frac{\omega }{\varLambda }+ \frac{\omega ^{2}}{2\varLambda ^{2}}\right) \), by assuming \(\coth [\frac{\Delta _{0}}{2k_{B}T}]\approx \frac{2k_{B}T}{\Delta _{0}}\), which means \(k_{B}T\gg 1\), the anomalous-diffusion coefficient \(\tilde{f}\) is obtained by \(\tilde{f}=4 J_{0} k_{B}T\frac{\varLambda }{\Delta _{0}} \); Hence, the linear fidelity \( \mathcal {F}(t)\) is given by

$$\begin{aligned} \mathcal {F}(t)=1-\left( 1+\frac{\tilde{\gamma }}{D}\right) e^{-2Dt}\sinh [2Dt]. \end{aligned}$$
(A10)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehdashti, S., Yasar, F., Harouni, M.B. et al. Quantum speed limit in the thermal spin-boson system with and without tunneling term. Quantum Inf Process 19, 308 (2020). https://doi.org/10.1007/s11128-020-02807-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02807-1

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy