Abstract
In this paper, we study the spin-bosonic model, with and without tunneling terms, in detail. The spin-bosonic model without tunneling is studied by using the thermofield dynamics approach. Indeed, by considering temperature, we show that environmental states, while they become entangled with system, approach thermal coherent states with different phases. In addition, by considering the tunneling term, we study the interplay of the environmental cut-off frequency as well as the impacts of environmental temperature on the quantum speed limit in both cases, i.e., spin-boson system with and without tunneling term. In these studies, we indicate temperature play more important role in compare with cut-off frequency to control the quantumness of a spin system.









Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)
Costi, T., Kieffer, C.: Equilibrium dynamics of the dissipative two-state system. Phys. Rev. Lett. 76, 1683 (1996)
Egger, R., Mak, C.: Low-temperature dynamical simulation of spin-boson systems. Phys. Rev. B 50, 15210 (1994)
Dehdashti, S., Mahdifar, A., Harouni, M.B., Roknizadeh, R.: Decoherence of spin-deformed bosonic model. Ann. Phys. 334, 321 (2013)
Dehdashti, S., Harouni, M.B., Mahdifar, A., Roknizadeh, R.: Deformed Weyl–Heisenberg algebra and quantum decoherence effect. Laser Phys. 24, 055203 (2014)
Dehdashti, S., et al.: Stability of two interacting entangled spins interacting with a thermal environment. Quantum Inf. Comput. 16, 1365 (2016)
Zurek, W.H.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516 (1981)
Zurek, W.H., Habib, S., Paz, J.P.: Coherent states via decoherence. Phys. Rev. Lett. 70, 1187 (1993)
Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)
Schlosshauer, M.A.: Decoherence: And the Quantum-to-Classical Transition. Springer, Berlin (2007)
Pachon, L.A., Brumer, P.: Physical basis for long-lived electronic coherence in photosynthetic light-harvesting systems. J. Phys. Chem. Lett. 2, 2728 (2011)
Fleming, G.R., Scholes, G.D., Cheng, Y.-C.: Quantum effects in biology. Procedia Chem. 3, 38 (2011)
Huelga, S.F., Plenio, M.: Quantum dynamics of bio-molecular systems in noisy environments. Procedia Chem. 3, 248 (2011)
Shi, Q., Zhu, L., Chen, L.: Quantum rate dynamics for proton transfer reaction in a model system: effect of the rate promoting vibrational mode. J. Chem. Phys. 135, 044505 (2011)
Lei, C.U., Zhang, W.-M.: Decoherence suppression of open quantum systems through a strong coupling to non-Markovian reservoirs. Phys. Rev. A 84, 052116 (2011)
Zhang, J., Liu, Y.-X., Zhang, W.-M., Wu, L.-A., Wu, R.-B., Tarn, T.-J.: Deterministic chaos can act as a decoherence suppressor. Phys. Rev. B 84, 214304 (2011)
Costi, T., McKenzie, R.H.: Entanglement between a qubit and the environment in the spin-boson model. Phys. Rev. A 68, 034301 (2003)
Uchiyama, C., Aihara, M.: Multipulse control of decoherence. Phys. Rev. A 66, 032313 (2002)
Weiss, U.: Quantum Dissipative Systems, vol. 10. World Scientific, Singapore (1999)
Pöschl, G., Teller, E.: Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Z. Phys. 83, 143 (1933)
Gilmore, J.B., McKenzie, R.H.: Criteria for quantum coherent transfer of excitations between chromophores in a polar solvent. Chem. Phys. Lett. 421, 266 (2006)
Tirandaz, A., Ghahramani, F.T., Shafiee, A.: Emergence of molecular chirality due to chiral interactions in a biological environment. J. Biol. Phys. 40, 369 (2014)
Mandelstam, L., Tamm, I.: The uncertainty relation between energy and time in nonrelativistic quantum mechanics. J. Phys. (USSR) 9, 1 (1945)
Fleming, G.N.: A unitarity bound on the evolution of nonstationary states. Il Nuovo Cimento A (1971-1996) 16, 232 (1973)
Anandan, J., Aharonov, Y.: Geometry of quantum evolution. Phys. Rev. Lett. 65, 1697 (1990)
Vaidman, L.: Minimum time for the evolution to an orthogonal quantum state. Am. J. Phys. 60, 182 (1992)
Margolus, N., Levitin, L.B.: The maximum speed of dynamical evolution. Phys. D 120, 188 (1998)
Levitin, L.B., Toffoli, T.: Fundamental limit on the rate of quantum dynamics: the unified bound is tight. Phys. Rev. Lett. 103, 160502 (2009)
Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)
Lloyd, S.: Nature 406, 1047 (2000)
Lloyd, S.: Computational capacity of the universe. Phys. Rev. Lett. 88, 237901 (2002)
Caneva, T., et al.: Optimal control at the quantum speed limit. Phys. Rev. Lett. 103, 240501 (2009)
Zhang, Y.-J., Han, W., Xia, Y.-J., Cao, J.-P., Fan, H.: Quantum speed limit for arbitrary initial states. Sci. Rep. 4, 1–6 (2014)
Dehdashti, S., Harouni, M.B., Mirza, B., Chen, H.: Decoherence speed limit in the spin-deformed boson model. Phys. Rev. A 91, 022116 (2015)
Stamp, P.C.: The decoherence puzzle. Stud. Hist. Philos. Sci. Part B Stud. Hist. Philos. Mod. Phys. 37, 467 (2006)
Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)
Cirac, J.I., Zoller, P.: Goals and opportunities in quantum simulation. Nat. Phys. 8, 264 (2012)
Taddei, M.M., Escher, B.M., Davidovich, L., de Matos Filho, R.L.: Quantum speed limit for physical processes. Phys. Rev. Lett. 110, 050402 (2013)
del Campo, A., Egusquiza, I., Plenio, M., Huelga, S.: Quantum speed limits in open system dynamics. Phys. Rev. Lett. 110, 050403 (2013)
Deffner, S., Lutz, E.: Quantum speed limit for non-Markovian dynamics. Phys. Rev. Lett. 111, 010402 (2013)
Audenaert, K.M.: Comparisons between quantum state distinguishability measures. Quantum Inf. Comput. 14, 31 (2014)
Khanna, F. C., Malbouisson, A. P., Malbouisson, J., Santana, A. E.: Thermal quantum field theory: algebraic aspects and applications. In: Ch. 12, Thermal Quantum Field Theory: Algebraic Aspects and Applications. World Scientific Books, Singapore (2009)
Bagheri, H., Mahdifar, A.: Thermal nonlinear coherent states on a flat space and on a sphere. J. Math. Phys. 54, 052104 (2013)
Barnett, S., Knight, P.: Thermofield analysis of squeezing and statistical mixtures in quantum optics. J. Opt. Soc. Am. B 2, 467 (1985)
Mann, A., Revzen, M.: Thermal coherent states. Phys. Lett. A 134, 273 (1989)
Chaturvedi, S., Sandhya, R., Srinivasan, V., Simon, R.: Thermal counterparts of nonclassical states in quantum optics. Phys. Rev. A 41, 3969 (1990)
Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)
Dehdashti, S., Mahdifar, A., Roknizadeh, R.: Coherent state of \(\alpha \)-deformed Weyl–Heisenberg algebra. Int. J. Geom. Methods Mod. Phys. 10, 1350014 (2013)
Acknowledgements
Authors gratefully acknowledge Mr. Joseph Bass, University of North Florida (UNF), for some useful discussions and editing of this paper. M. B. H., A. M. and B. M. wishes to thank The Office of Graduate Studies of the University of Isfahan, Shahrekord University and Isfahan University of Technology for their support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix: Born Markov master equation for the spin-boson model
Appendix: Born Markov master equation for the spin-boson model
We assume that the central spin system moves in a symmetrical double-well potential, which lead to consider \(\omega _{0}=0\). Hence, the master equation of spin-boson system is obtained as [9]:
in which the noise kernel \(\nu (\tau )\) and the dissipation one \(\eta (\tau )\) are respectively defined by
By rewriting the relation (A1), we can obtain
in which the re-normalized Lamb-shifted spin system Hamiltonian is given by \(\hat{H}^{\prime }=\left( -\frac{1}{2}\Delta -\tilde{f}\right) \hat{\sigma }_{x} \); the normal-diffusion coefficient definition \(\tilde{D}\), is achieved by
and \(\zeta =\tilde{f}+i\tilde{\gamma }\) is defined according to the anomalous-diffusion coefficient \(\tilde{f}\) and damping coefficient \(\tilde{\gamma }\) which are respectively defined as
Hence, by considering the density matrix as \(\rho _{S}=r_{0}(t)\sigma _{0}+ \sum _{i=1}^{3}r_{i}(t) \sigma _{i}\), we can obtain the dynamical equations as
Now, by using the initial conditions of the spin system, we obtain:
in which
with \(\varTheta =\root \of {4D^{2}-\Delta _{0}^{2}+4\tilde{f}\Delta _{0}}\), and \(\rho _{12}\) is given by the following relation:
Also, by using the spectral density, the normal-diffusion and the damping coefficient are respectively given by \( D=\frac{\pi }{2}J(\Delta _{0}) \coth \left[ \frac{\Delta _{0}}{2 k_{B}T}\right] \) and \(\tilde{\gamma }=\frac{\pi }{2}J(\Delta _{0}) \); moreover, in the regime in which only the second-ordered approximation of \(1/ \varLambda \) is valid, i.e., \(\varLambda \gg 1\) and therefore the spectral density is given by \(J(\omega )\approx 4J_{0} \omega \left( 1-\frac{\omega }{\varLambda }+ \frac{\omega ^{2}}{2\varLambda ^{2}}\right) \), by assuming \(\coth [\frac{\Delta _{0}}{2k_{B}T}]\approx \frac{2k_{B}T}{\Delta _{0}}\), which means \(k_{B}T\gg 1\), the anomalous-diffusion coefficient \(\tilde{f}\) is obtained by \(\tilde{f}=4 J_{0} k_{B}T\frac{\varLambda }{\Delta _{0}} \); Hence, the linear fidelity \( \mathcal {F}(t)\) is given by
Rights and permissions
About this article
Cite this article
Dehdashti, S., Yasar, F., Harouni, M.B. et al. Quantum speed limit in the thermal spin-boson system with and without tunneling term. Quantum Inf Process 19, 308 (2020). https://doi.org/10.1007/s11128-020-02807-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02807-1