Abstract
This paper presents a robust dense matching algorithm based on a geometric approach Voronoï. Feature points are matched and used to divide the images (left and right) to Voronoï regions. A left Voronoï region corresponds with its right counterpart, if the sites of the two regions constitute a true matching (seed).The two regions have the same number of points, the same shape and are highly correlated. The points of the Voronoï regions which satisfy all these criteria serve as new seeds for the next iteration. The originality of our approach lies in the fact that the segmentation strategy of the image is based on the distance between the pixels and not on the intensity (colour). The results obtained from test images show that our method is robust and reduces errors due to problems of ambiguity between pixels belonging to areas with low and/or repetitive textures. It also enables us to overcome the problems of occlusions and depth discontinuities.



















Similar content being viewed by others
References
El Akkad, N., Merras, M., Saaidi, A., & Satori, K. (2014). Camera self-calibration with varying intrinsic parameters by an unknown three-dimensional scene. The Visual Computer, 30(5), 519–530. doi:10.1007/S00371-013-0877-2.
El Hazzat, S., Saaidi, A., & Satori, K. (2014). Euclidean 3d reconstruction of unknown objects from multiple images. Journal of Emerging Technologies in Web Intelligence, 6(1), 59–63. doi:10.4304/JETWI.6.1.59-63.
El Kaddouhi, S., Saaidi, A., & Abarkan, M. (2014). A new robust face detection method based on corner points. International Journal of Software Engineering and Its Applications, 8(11), 25–40. doi:10.14257/IJSEIA.2014.8.11.03.
Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal of Computer Vision, 47(1–3), 7–42. doi:10.1023/A:1014573219977.
Brown, M. Z., Burschka, D., & Hager, G. D. (2003). Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 25(8), 993–1008. doi:10.1109/TPAMI.2003.1217603.
Hirschmuller, H., & Scharstein, D. (2007). Evaluation of cost functions for stereo matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (pp. 1–8). doi:10.1109/CVPR.2007.383248.
Szeliski, R., & Scharstein, D. (2002). Symmetric sub-pixel stereo matching. European Conference on Computer Vision, 2351, 525–540. doi:10.1007/3-540-47967-8_35.
Chen, Q., & Medioni, G. (1999). A volumetric stereo matching method: application to image-based modeling. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1, 29–34. doi:10.1109/CVPR.1999.786913.
Lhuillier, M., & Long, Q. (2002). Match propagation for image-based modeling and rendering. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 24(8), 1140–1146. doi:10.1109/TPAMI.2002.1023810.
Ma, Y., & Liu, W. (2005). Progressive matching based on segmentation for 3d reconstruction. Computer and Information Technology (CIT), 2, 575–579. doi:10.1109/CIT.2005.157.
Zhang, Z., & Shan, Y. (2001). A progressive scheme for stereo matching. 3D Structure from Multiple Images of Large-Scale Environments (SMILE), 2018, 68–85. doi:10.1007/3-540-45296-6_5.
Gales, G., Chambon, S., Crouzil, A., & McDonald, J. (2012). Reliability measure for propagation-based stereo matching. International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS), 7, 1–4. doi:10.1109/WIAMIS.2012.6226761.
Chambon, S., & Crouzil, A. (2011). Similarity measures for image matching despite occlusions in stereo vision. Pattern Recognition, 44(9), 2063–2075. doi:10.1016/J.patcog.2011.02.001.
Kanade, T., & Okutomi, M. (1994). A stereo matching algorithm with an adaptive window: Theory and experiment. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 16(9), 920–932. doi:10.1109/34.310690.
Veksler, O. (2003). Fast variable window for stereo correspondence using integral images. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1, 556–561. doi:10.1109/CVPR.2003.1211403.
Yoon, K.-J., & Kweon, I. S. (2006). Adaptive support-weight approach for correspondence search. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 28(4), 650–656. doi:10.1109/TPAMI.2006.70.
Tombari, F., Mattoccia, S., & Di Stefano, L. (2007). Segmentation-based adaptive support for accurate stereo correspondence. Pacific-Rim Symposium on Image and Video Technology (PSIVT), 4872, 427–438. doi:10.1007/978-3-540-77129-6_38.
Hosni, A., Bleyer, M., Gelautz, M., & Rhemann, C. (2009). Local stereo matching using geodesic support weights. IEEE Conference on Image Processing (ICIP), 1406, 2093–2096. doi:10.1109/ICIP.2009.5414478.
Hosni, A., Bleyer, M., & Gelautz, M. (2013). Secrets of adaptive support weight techniques for local stereo matching. Computer Vision and Image Understanding (CVIU), 117(6), 620–632. doi:10.1016/j.cviu.2013.01.007.
Monga, O. (1987). An optimal region growing algorithm for image segmentation. International Journal of Pattern Recognition and Artificial Intelligence, 1(3), 351–376. doi:10.1142/S0218001487000242.
Kannala, J., & Brandt, S.S.(2007) Quasi-dense wide baseline matching using match propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),(pp. 1–8). doi:10.1109/CVPR.2007.383247.
Zhang, H., & Negahdaripour, S. (2005). Fast and robust progressive stereo reconstruction by symmetry guided fusion Oceans 2005 -. Europe, 1, 551–556. doi:10.1109/OCEANSE.2005.1511774.
Sun, J., Zheng, N.-N., & Shum, H.-Y. (2003). Stereo matching using belief propagation. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 25(7), 787–800. doi:10.1109/TPAMI.2003.1206509.
Veksler, O. (1999) Efficient graph-based energy minimization methods in computer vision. Ph.D. thesis, Cornell University, Ithaca, NY.
Park, J., Kim, W., & Lee, K. M. (2007). Stereo matching using population-based MCMC. Asian Conference on Computer Vision (ACCV), 4844, 560–569. doi:10.1007/978-3-540-76390-1_55.
Gong, M., Yang, & Y.-H. (2001) Multi-resolution stereo matching using genetic algorithm. IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV), (pp. 21–29). doi:10.1109/SMBV.2001.988759.
Ohta, Y., & Kanade, T. (1985). Stereo by intra- and inter-scanline search using dynamic programming. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 7(2), 139–154. doi:10.1109/TPAMI.1985.4767639.
Tao, H., Sawhney, H. S., & Kumar, R. (2001). A global matching famework for stereo computation. IEEE International Conference on Computer Vision (ICCV), 1, 532–539. doi:10.1109/ICCV.2001.937562.
Hong, L., & Chen, G. (2004). Segment-based stereo matching using graph cuts. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1, 74–81. doi:10.1109/CVPR.2004.1315016.
Wei, Y., & Quan, L. (2004). Region-based progressive stereo matching. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1, 106–113. doi:10.1109/CVPR.2004.1315020.
Yang, Q., Wang, L., Yang, R., Stewénius, H., & Nistér, D. (2009). Stereo matching with color-weighted correlation, hierarchical belief propagation, and occlusion handling. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 31(3), 492–504. doi:10.1109/TPAMI.2008.99.
Klaus, A., Sormann, M., & Karner, K. (2006). Segment-based stereo matching using belief propagation and a self-adapting dissimilarity measure. International Conference on Pattern Recognition (ICPR), 3, 15–18. doi:10.1109/ICPR.2006.1033.
Yang, Q., Yang, R., Davis, J., & Nister, D. (2007). Spatial-depth super resolution for range images. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 5006, 1–8. doi:10.1109/CVPR.2007.383211.
Wang, Z.-F., & Zheng, Z.-G. (2008). A region based stereo matching algorithm using cooperative optimization. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1, 1–8. doi:10.1109/CVPR.2008.4587456.
Xu, L., & Jia, J. (2008). Stereo matching: an outlier confidence approach. European Conference on Computer Vision (ECCV), 5305, 775–787. doi:10.1007/978-3-540-88693-8_57.
Bleyer, M., Gelautz, M., Rother, C., & Rhemann, C. (2009). A stereo approach that handles the matting problem via image warping. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2, 501–508. doi:10.1109/CVPR.2009.5206656.
Bleyer, M., Rother, C., & Kohli, P. (2010). Surface stereo with soft segmentation. Computer Vision and Pattern Recognition (CVPR), 24, 1570–1577. doi:10.1109/CVPR.2010.5539783.
Bleyer, M., Rother, C., Kohli, P., Scharstein, D., & Sinha, S. (2011). Object stereo - joint stereo matching and object segmentation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 12, 3081–3088. doi:10.1109/CVPR.2011.5995581.
Marr, D., & Poggio, T. (1991). Cooperative computation of stereo disparity. Boston: From the Retina to the Neocortex. Birkhäuser.
Roy, S., & Cox, I. J. (1998). A maximum-flow formulation of the N-camera stereo correspondence problem. IEEE International Conference on Computer Vision (ICCV), 1, 492–499. doi:10.1109/ICCV.1998.710763.
Cox, I. J., Hingorani, S. L., Rao, S. B., & Maggs, B. M. (1996). A maximum likelihood stereo algorithm. Computer Vision and Image Understanding (CVIU), 63(3), 542–567. doi:10.1006/CVIU.1996.0040.
Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 23(11), 1222–1239. doi:10.1109/34.969114.
Kolmogorov, V., & Zabih, R. (2001). Computing visual correspondence with occlusions using graph cuts. IEEE International Conference on Computer Vision (ICCV), 2, 508–515. doi:10.1109/ICCV.2001.937668.
Zhu, S., Zhang, L., & Jin, H. (2012). Locally linear regression model for boundary preserving regularization in stereo matching. European Conference on Computer Vision (ECCV), 5, 101–115. doi:10.1007/978-3-642-33715-4_8.
Harris, C., & Stephens, M. (1988). A combined corner and edge detector. Alvey Vision Conference (AVC), (pp. 147–151). doi:10.5244/C.2.23.
Shi, J., & Tomasi, C. (1994). Good features to track. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2, 593–600. doi:10.1109/CVPR.1994.323794.
Noble, J. A. (1988). Finding corners. Image and Vision Computing, 6(2), 121–128. doi:10.1016/0262-8856(88)90007-8.
Ahuja, N., An, B., & Schachter, B. (1985). Image representation using Voronoï tessellation. Computer Vision, Graphics, and Image Processing, 29(3), 286–295. doi:10.1016/0734-189X(85)90126-4.
Tuceryan, M., & Jain, A. K. (1990). Texture segmentation using Voronoï polygons. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 12(2), 211–216. doi:10.1109/34.44407.
Klein, R., Langetepe, E., & Nilforoushan, Z. (2009). Abstract Voronoi diagrams revisited. Computational Geometry, 42(9), 885–902. doi:10.1016/J.COMGEO.2009.03.002.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Laraqui, M., Saaidi, A., Mouhib, A. et al. Images Matching Using Voronoï Regions Propagation. 3D Res 6, 27 (2015). https://doi.org/10.1007/s13319-015-0056-5
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s13319-015-0056-5