计算机科学 ›› 2019, Vol. 46 ›› Issue (6): 270-276.doi: 10.11896/j.issn.1002-137X.2019.06.040
曹义亲, 曹婷, 黄晓生
CAO Yi-qin, CAO Ting, HUANG Xiao-sheng
摘要: 针对àtrous小波变换与NSCT这两种多尺度变换的优缺点,通过引入àtrous-NSCT变换工具,提出了一种基于àtrous-NSCT变换和区域特性的图像融合方法。此方法将区域平均梯度作为活性测度,以系数取大的融合方法完成低频子带图像的融合;选用基于区域方差加权自适应模型的融合方法完成高频子带图像的融合,通过àtrous逆变换处理获得融合后的最终结果。在实验中将新提出的方法与其他5种多尺度融合方法进行比较,结果表明,当新型多尺度变换的分解层数为4时,所获得的融合结果在主观视觉与客观评价两方面的性能都得到了明显的提升。
中图分类号:
[1]WANG J,PENG J,JIANG X,et al.Remote-Sensing Image Fusion Using Sparse Representation with Sub-Dictionaries[J].International Journal of Remote Sensing,2017,38(12):3564-3585. [2]TAN R L.An Image Fusion Algorithm Using Wavelet Transform[J].Bulletin of Surveying and Mapping,2017(9):42-45.(in Chinese) 谭仁龙.一种基于小波变换的图像融合方法[J].测绘通报,2017(9):42-45. [3]WANG L J,HAN J,ZHANG Y,et al.Image Fusion Via Feature Residual and Statistical Matching[J].Iet Computer Vision,2016,10(6):551-558. [4]ZHANGJ Y,KUN Z.A Wavelet Image Fusion Algorithm Based on Multi-Resolution and Multi-Scale Transform[J].BoletinTecnico/technical Bulletin,2017,55(7):35-41. [5]SEAL A,BHATTACHARJEE D,NASIPURI M.Human Face Recognition Using Random Forest Based Fusion of àtrous Wavelet Transform Coefficients from Thermal and Visible Images[J].AEU-International Journal of Electronics and Communications,2016,70(8):1041-1049. [6]DING L,YANG Z R,WEN R C,et al.Application of Shearlet and Wavelets in Signal and Image Denoising[J].Journal of Na-tural Science of Heilongjiang University,2016,33(2):272-280.(in Chinese) 丁亮,杨卓然,闻瑞琛,等.剪切波与小波在信号及图像去噪中的应用[J].黑龙江大学自然科学学报,2016,33(2):272-280. [7]DO M N,VETTERLI M.The Contourlet Transform:an Effi-cient Directional Multi-Resolution Image Representation[J].IEEE Transactions on Image Processing,2005,14(12):2091-2106. [8]LABATE D,LIM W Q,KUTYNIOK G,et al.Sparse Multi-Dimensional Representation Using Shearlets[J].Proceedings of the SPIE,2005,39(1):298-318. [9]YANG D S.Image Fusion Algorithm Based on Shearlet Transform and Block Matching [D].Beijing:Beijing Jiaotong University,2017.(in Chinese) 杨东盛.基于剪切波变换和图像块匹配的图像融合算法研究[D].北京:北京交通大学,2017. [10]DA C A,ZHOU J,DO M N.The Non-Subsampled ContourletTransform:Theory,Design,and Applications[J].IEEE Transa-ctions on Image Processing,2006,15(10):3089-3101. [11]QIN X,ZHENG J,HU G.Image Fusion Method Based on The Local Neighborhood Feature and Non-Subsampled ContourletTransform[C]∥International Conference on Image,Vision and Computing.IEEE,2017:396-400. [12]LI H,QIU H,YU Z,et al.Infrared and Visible Image Fusion Scheme Based on NSCT and Low-Level Visual Features[J].Infrared Physics & Technology,2016,76(5):174-184. [13]CAO Y Q,CAO T,HUANG X S.Image Fusion Method Combined CS and Regional Characteristics Based on NSST[J].Computer Engineering and Appications,2018,54(20):190-196.(in Chinese) 曹义亲,曹婷,黄晓生.基于NSST的CS与区域特性相结合的图像融合方法[J/OL].计算机工程与应用,2018,54(20):190-196. [14]FENG Y,HE X S,YANG X S.Infrared and Visual Image Fusion Based on NSCT and Hybrid Particle Swarm Optimization[J].Electronics Optics & Control,2018,25(1):23-27.(in Chinese) 冯颖,贺兴时,杨新社.基于NSCT和混合粒子群算法的红外与可见光图像融合[J].电光与控制,2018,25(1):23-27. [15]ZHANG L,LI Z,LIU J,et al.Improved Algorithm of Adaptive DR Image Denoising Based on Fast Curvelet Transform and Ani-sotropic Median-diffusion Filtering[C]∥The 15th International Conference on Biomedical Engineering.Cham:Springer,2014:581-584. [16]MICHAEL D,MC N,HOLLY S.et al.A Framework for Cognitive Field Studies[J].International Journal of Cognitive Ergonomics,1999,3(4):307-331. [17]ZHANG K.Research on a Rapid Fusion Method for Remote Sensing Images Based on an Improve Atrous Wavelet Decomposition[D].Kaifeng:Henan University,2016.(in Chinese) 张凯.基于改进atrous小波分解的遥感影像快速融合方法的研究[D].开封:河南大学,2016. [18]HUA K L,DAI B R,SRINIVASAN K,et al.A Hybrid NSCT Domain Image Watermarking Scheme[J].Eurasip Journal on Image & Video Processing,2017,2017(1):1-17. [19]LI L,SI Y,JIA Z.Remote Sensing Image Enhancement Based on Non-Local Means Filter in NSCT Domain[J].Algorithms,2017,10(4):1-13. [20]CAO Y Q,HE Y E,HUANG X S.Multi-focus Image Fusion Algorithm Based on Compressed Sensing and Regional Characteristics.Computre Science,2017,44(1):295-299.(in Chinese) 曹义亲,贺亚飞,黄晓生.基于区域特性的压缩感知多聚焦融合算法.计算机科学,2017,44(1):295-299. [21]GONG J M,YANG X,YANG M,et al.An Image Fusion Algorithm Based on Region Average Gradient and Region Energy[J].Journal of Xi’an University of Posts and Telecommunications,2016,21(3):54-58.(in Chinese) 巩稼民,杨潇,杨萌,等.基于区域平均梯度与区域能量的图像融合[J].西安邮电大学学报,2016,21(3):54-58. |
[1] | 陈志强, 韩萌, 李慕航, 武红鑫, 张喜龙. 数据流概念漂移处理方法研究综述 Survey of Concept Drift Handling Methods in Data Streams 计算机科学, 2022, 49(9): 14-32. https://doi.org/10.11896/jsjkx.210700112 |
[2] | 王明, 武文芳, 王大玲, 冯时, 张一飞. 生成链接树:一种高数据真实性的反事实解释生成方法 Generative Link Tree:A Counterfactual Explanation Generation Approach with High Data Fidelity 计算机科学, 2022, 49(9): 33-40. https://doi.org/10.11896/jsjkx.220300158 |
[3] | 张佳, 董守斌. 基于评论方面级用户偏好迁移的跨领域推荐算法 Cross-domain Recommendation Based on Review Aspect-level User Preference Transfer 计算机科学, 2022, 49(9): 41-47. https://doi.org/10.11896/jsjkx.220200131 |
[4] | 周芳泉, 成卫青. 基于全局增强图神经网络的序列推荐 Sequence Recommendation Based on Global Enhanced Graph Neural Network 计算机科学, 2022, 49(9): 55-63. https://doi.org/10.11896/jsjkx.210700085 |
[5] | 宋杰, 梁美玉, 薛哲, 杜军平, 寇菲菲. 基于无监督集群级的科技论文异质图节点表示学习方法 Scientific Paper Heterogeneous Graph Node Representation Learning Method Based onUnsupervised Clustering Level 计算机科学, 2022, 49(9): 64-69. https://doi.org/10.11896/jsjkx.220500196 |
[6] | 柴慧敏, 张勇, 方敏. 基于特征相似度聚类的空中目标分群方法 Aerial Target Grouping Method Based on Feature Similarity Clustering 计算机科学, 2022, 49(9): 70-75. https://doi.org/10.11896/jsjkx.210800203 |
[7] | 郑文萍, 刘美麟, 杨贵. 一种基于节点稳定性和邻域相似性的社区发现算法 Community Detection Algorithm Based on Node Stability and Neighbor Similarity 计算机科学, 2022, 49(9): 83-91. https://doi.org/10.11896/jsjkx.220400146 |
[8] | 吕晓锋, 赵书良, 高恒达, 武永亮, 张宝奇. 基于异质信息网的短文本特征扩充方法 Short Texts Feautre Enrichment Method Based on Heterogeneous Information Network 计算机科学, 2022, 49(9): 92-100. https://doi.org/10.11896/jsjkx.210700241 |
[9] | 徐天慧, 郭强, 张彩明. 基于全变分比分隔距离的时序数据异常检测 Time Series Data Anomaly Detection Based on Total Variation Ratio Separation Distance 计算机科学, 2022, 49(9): 101-110. https://doi.org/10.11896/jsjkx.210600174 |
[10] | 聂秀山, 潘嘉男, 谭智方, 刘新放, 郭杰, 尹义龙. 基于自然语言的视频片段定位综述 Overview of Natural Language Video Localization 计算机科学, 2022, 49(9): 111-122. https://doi.org/10.11896/jsjkx.220500130 |
[11] | 曹晓雯, 梁美玉, 鲁康康. 基于细粒度语义推理的跨媒体双路对抗哈希学习模型 Fine-grained Semantic Reasoning Based Cross-media Dual-way Adversarial Hashing Learning Model 计算机科学, 2022, 49(9): 123-131. https://doi.org/10.11896/jsjkx.220600011 |
[12] | 周旭, 钱胜胜, 李章明, 方全, 徐常胜. 基于对偶变分多模态注意力网络的不完备社会事件分类方法 Dual Variational Multi-modal Attention Network for Incomplete Social Event Classification 计算机科学, 2022, 49(9): 132-138. https://doi.org/10.11896/jsjkx.220600022 |
[13] | 戴禹, 许林峰. 基于文本行匹配的跨图文本阅读方法 Cross-image Text Reading Method Based on Text Line Matching 计算机科学, 2022, 49(9): 139-145. https://doi.org/10.11896/jsjkx.220600032 |
[14] | 曲倩文, 车啸平, 曲晨鑫, 李瑾如. 基于信息感知的虚拟现实用户临场感研究 Study on Information Perception Based User Presence in Virtual Reality 计算机科学, 2022, 49(9): 146-154. https://doi.org/10.11896/jsjkx.220500200 |
[15] | 周乐员, 张剑华, 袁甜甜, 陈胜勇. 多层注意力机制融合的序列到序列中国连续手语识别和翻译 Sequence-to-Sequence Chinese Continuous Sign Language Recognition and Translation with Multi- layer Attention Mechanism Fusion 计算机科学, 2022, 49(9): 155-161. https://doi.org/10.11896/jsjkx.210800026 |
|