计算机科学 ›› 2019, Vol. 46 ›› Issue (11): 277-283.doi: 10.11896/jsjkx.181001985
王卫红, 陈骁, 吴炜, 高星宇
WANG Wei-hong, CHEN Xiao, WU Wei, GAO Xing-yu
摘要: 城市水体分布信息对于理解城市水循环、热岛效应等地理现象具有重要意义。利用高分辨率影像进行水体提取和水体制图是常用的信息获取方式。由于城市环境背景复杂、高分影像光谱通道少以及水体在影像上分布比例不均匀等原因,将高分影像应用于水体自动提取仍存在较大难度。对此,基于国产高分影像发展一种面向复杂环境的城市水体自动化提取方法。首先,根据水体近红外通道灰度值较低的特征,自适应选取阈值进行分割,获取初始水体;其次,对初始水体进行缓冲以得到靶区域,使用高斯混合模型来表达其整体分布,通过改进期望最大算法估计水体类别分布参数后,使用最大似然法进行水体自动提取;在此基础上,针对粗提取水体中混杂阴影的问题,提出了融合特征方法来去除阴影,从而获得准确的水体提取结果。对上海市金山区的水体提取实验表明,使用所提方法可以有效提取实验影像中占比较小的水体结构,整体精度较目前常用的自动提取算法有明显提升。
中图分类号:
[1]GHOSH S,DAS A.Modelling urban cooling island impact ofgreen space and water bodies on surface urban heat island in a continuously developing urban area[J].Modeling Earth Systems and Environment,2018,4(2):501-515. [2]BIORESITA F,PUISSANT A,STUMPF A,et al.A Method for Automatic and Rapid Mapping of Water Surfaces from Sentinel-1 Imagery[J].Remote Sensing,2018,10(2):217-233. [3]ZHAO X,WANG P,CHEN C,et al.Waterbody information extraction from remote-sensing images after disasters based on spectral information and characteristic knowledge[J].International journal of remote sensing,2017,38(5):1404-1422. [4]BEHERA M D,GUPTA A K,BARIK S K,et al.Use of satelliteremote sensing as a monitoring tool for land and water resources development activities in an Indian tropical site[J].Environmental Monitoring and Assessment,2018,190(7):401. [5]APPEL I.Uncertainty in satellite remote sensing of snow fraction for water resources management[J].Frontiers of Earth Science,2018,12(4):711-727. [6]MAHDIANPARI M,SALEHI B,MOHAMMADIMANESH F,et al.Fisher Linear Discriminant Analysis of coherency matrix for wetland classification using PolSAR imagery[J].Remote Sensing of Environment,2018,206:300-317. [7]JIA K,JIANG W,LI J,et al.Spectral matching based on discrete particle swarm optimization:A new method for terrestrial water body extraction using multi-temporal Landsat 8 images[J].Remote Sensing of Environment,2018,209:1-18. [8]MCFEETERS S K.The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J].International Journal of Remote Sensing,1996,17(7):1425-1432. [9]XU H Q.A study on information extraction of water body with the Modified Normalized Difference Water Index (MNDWI)[J].Journal of Remote Sensing,2005,9(5):589-595.(in Chinese) 徐涵秋.利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J].遥感学报,2005,9(5):589-595. [10]WANG X,XIE S,ZHANG X,et al.A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery[J].International Journal of Applied Earth Observation & Geoinformation,2018,68:73-91. [11]HUA L,MAN W,WANG Q,et al.A new decision tree classification approach for extracting urban land from Landsat TM in a coastal city,China[C]∥2012 International Symposium on Information Science and Engineering (ISISE).New York:IEEE,2012:282-286. [12]SUN X,LI L,ZHANG B,et al.Soft urban water cover extraction using mixed training samples and Support Vector Machines[J].International Journal of Remote Sensing,2015,36(13):3331-3344. [13]SCARPA G,GARGIULO M,MAZZA A,et al.A CNN-BasedFusion Method for Feature Extraction from Sentinel Data[J].Remote Sensing,2018,10(2):236. [14]MIAO Z,FU K,SUN H,et al.Automatic Water-Body Segmentation From High-Resolution Satellite Images via Deep Networks[J].IEEE Geoscience and Remote Sensing Letters,2018,15(4):602-606. [15]HE H Q,DU J,CHEN T,et al.Remote sensing image waterbody extraction combing NDWI with Convolutional Neural Network[J].Remote Sensing Information,2017,32(5):82-86.(in Chinese) 何海清,杜敬,陈婷,等.结合水体指数与卷积神经网络的遥感水体提取[J].遥感信息,2017,32(5):82-86. [16]LUO J C,ZHOU C H,LIANG Y,et al.Finite mixture modeland its EM clustering algorithm for remote sensing data[J].Journal of Image and Graphics,2002,7(4):336-340.(in Chinese) 骆剑承,周成虎,梁怡,等.有限混合密度模型及遥感影像EM聚类算法[J].中国图象图形学报,2002,7(4):336-340. [17]DEMPSTER A P,LAIRD N M,RUBIN D B.Maximum likelihood from incomplete data via the EM algorithm[J].Journal of the Royal Statistical Society:Series B (Methodological),1977,39(1):1-22. [18]ZHANG F,LI J,BING Z,et al.A simple automated dynamic threshold extraction method for the classification of large water bodies from landsat-8 OLI water index images[J].International Journal of Remote Sensing,2018,39(11):3429-3451. [19]ROSIN P L.Unimodal thresholding[J].Pattern Recognition,2001,34(11):2083-2096. [20]HUANG X,ZHANG L P,LI P X.Classification of high spatial resolution remotely sensed imagery based on the fusion of spectral and shape features[J].Journal of Remote Sensing,2007,11(2):193-200.(in Chinese) 黄昕,张良培,李平湘.融合形状和光谱的高空间分辨率遥感影像分类[J].遥感学报,2007,11(2):193-200. [21]REN G B,ZHANG J,MA Y,et al.Generative model basedsemi-supervised learning method of remote sensing image classification[J].Journal of Remote Sensing,2010,14(6):1090-1104.(in Chinese) 任广波,张杰,马毅,等.生成模型学习的遥感影像半监督分类[J].遥感学报,2010,14(6):1090-1104. [22]LIU S,SA R,MAGUIRE O,et al.Spot counting on fluorescence in situ hybridization in suspension images using Gaussian mixture model[C]∥Medical Imaging 2015:Image Processing.UnitedStates:International Society for Optics and Photonics,2015:94132H. [23]BOCHOW M,HEIM B,KUSTER T,et al.Automatic detection and delineation of surface water bodies in airborne hyperspectral data[J].Geoscience and Remote Sensing Symposium,2012,53(60):5226-5229. [24]CHEN Y,WEN D,JING L,et al.Shadow information recovery in urban areas from very high resolution satellite imagery[J].International Journal of Remote Sensing,2007,28(15):3249-3254. [25]GUO J H,TIAN Q J,WU Y Z,et al.Study on multispectral detecting shadow areas and a theoretical model of removing sha-dows from remote sensing images[J].Journal of Remote Sen-sing,2006,10(2):151-159.(in Chinese) 虢建宏,田庆久,吴昀昭.遥感影像阴影多波段检测与去除理论模型研究[J].遥感学报,2006,10(2):151-159. [26]ONO A,KAJIWARA K,HONDA Y.Development of new vegetation indexes,shadow index (SI) and water stress trend (WST)[J].Networking the World with Remote Sensing,2010,38(1):710-714. [27]JIA K,LIANG S,GU X,et al.Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data[J].Remote Sensing of Environment,2016,177:184-191. [28]SHEN G,XU B,JIN Y,et al.Monitoring wind farms occupying grasslands based on remote-sensing data from China’s GF-2 HD satellite—A case study of Jiuquan city,Gansu Province,China[J].Resources,Conservation and Recycling,2017,121:128-136. [29]ÜNSALAN A C,BOYER K L.Linearized Shadow and Water Indices[J].Advances in Computer Vision & Pattern Recognition,2011,21(5):41-46. [30]CAI D,LI M,BAO Z,et al.Study on shadow detection method on high resolution remote sensing image based on HIS space transformation and NDVI index[C]∥2010 18th International Conference on Geoinformatics.New York:IEEE,2010:1-4. [31]PAL M,MATHER P M.Support Vector Machines for classification in remote sensing[J].International Journal of Remote Sensing,2015,26(5):1007-1011. [32]ZHU C,SHI W,PESARESI M,et al.The recognition of roadnetwork from high-resolution satellite remotely sensed data using image morphological characteristics[J].International Journal of Remote Sensing,2005,26(24):5493-5508. [33]YANG L,SU L H,WU B G,et al.Target Detection Algorithm of Hyperspectral Remote Sensing Imagery Combined with CEM.Journal of Chongqing University of Technology(Natural Science),2017,31(12):146-150,172.(in Chinese) 杨磊,苏令华,吴宝刚,等.一种结合CEM的高光谱遥感影像目标检测算法.重庆理工大学学报(自然科学),2017,31(12):146-150,172. [34]JIA H L,DAI H X.Remote sensing image classification based on local partial classifier and deep neural network.Machine Tool & Hydraulics,2017,45(24):64-68,89.(in Chinese) 贾厚林,戴红霞.基于局部分类器和深度神经网络的遥感图像分类.机床与液压,2017,45(24):64-68,89. |
[1] | 邹承明, 陈德. 高维大数据分析的无监督异常检测方法 Unsupervised Anomaly Detection Method for High-dimensional Big Data Analysis 计算机科学, 2021, 48(2): 121-127. https://doi.org/10.11896/jsjkx.191100141 |
[2] | 王卫东, 徐金慧, 张志峰, 杨习贝. 基于密度峰值聚类的高斯混合模型算法 Gaussian Mixture Models Algorithm Based on Density Peaks Clustering 计算机科学, 2021, 48(10): 191-196. https://doi.org/10.11896/jsjkx.200800191 |
[3] | 宋传鸣, 洪旭, 王相海. 空-频域联合投票的交通视频阴影去除方法 Shadow Removal of Traffic Surveillance Video by Joint Voting in Spatial-Frequency Domain 计算机科学, 2020, 47(5): 129-136. https://doi.org/10.11896/jsjkx.190400040 |
[4] | 王岩, 罗倩, 邓辉. 基于变分贝叶斯的轴承故障诊断方法 Bearing Fault Diagnosis Method Based on Variational Bayes 计算机科学, 2019, 46(11): 323-327. https://doi.org/10.11896/jsjkx.180901719 |
[5] | 陈嵘, 李鹏, 黄勇. 基于多特征融合的运动阴影去除算法 Moving Shadow Removal Algorithm Based on Multi-feature Fusion 计算机科学, 2018, 45(6): 291-295. https://doi.org/10.11896/j.issn.1002-137X.2018.06.051 |
[6] | 柴五一, 杨丰, 袁绍锋, 黄靖. 用于图像分割的多分类高斯混合模型和基于邻域信息的高斯混合模型 Multi-class Gaussian Mixture Model and Neighborhood Information BasedGaussian Mixture Model for Image Segmentation 计算机科学, 2018, 45(11): 272-277. https://doi.org/10.11896/j.issn.1002-137X.2018.11.043 |
[7] | 成英超,王瑞胡,胡章平. 一种基于高斯混合模型的协同过滤算法 Novel Approach on Collaborative Filtering Based on Gaussian Mixture Model 计算机科学, 2017, 44(Z6): 451-454. https://doi.org/10.11896/j.issn.1002-137X.2017.6A.101 |
[8] | 张宜浩,刘智,朱常鹏. 融合距离度量和高斯混合模型的中文词义归纳模型 Chinese Word Sense Induction Model by Integrating Distance Metric and Gaussian Mixture Model 计算机科学, 2017, 44(8): 265-269. https://doi.org/10.11896/j.issn.1002-137X.2017.08.045 |
[9] | 周红玉,杨扬,张愫. 基于迭代的非刚性点阵配准算法 Non-rigid Point Set Registration Algorithm Based on Iteration 计算机科学, 2016, 43(Z6): 226-231. https://doi.org/10.11896/j.issn.1002-137X.2016.6A.055 |
[10] | 范文超,李晓宇,魏 凯,陈兴林. 基于改进的高斯混合模型的运动目标检测 Moving Target Detection Based on Improved Gaussian Mixture Model 计算机科学, 2015, 42(5): 286-288. https://doi.org/10.11896/j.issn.1002-137X.2015.05.058 |
[11] | 韩光,孙宁,李晓飞,赵春霞. 基于混合PSO的高斯混合模型地形分类 Gaussian Mixture Model Terrain Classification Based on Hybrid PSO 计算机科学, 2014, 41(8): 289-292. https://doi.org/10.11896/j.issn.1002-137X.2014.08.061 |
[12] | 向金海,廖红虹,樊恒,代江华,孙伟平,余胜生. 基于局部强度比率特征的前景检测 Robust Foreground Detection Using Local Intensity Ratio 计算机科学, 2014, 41(3): 293-296. |
[13] | 胡庆辉,丁立新,陆玉靖,何进荣. 一种快速、鲁棒的有限高斯混合模型聚类算法 Rapid Robust Clustering Algorithm for Gaussian Finite Mixture Model 计算机科学, 2013, 40(8): 191-195. |
[14] | 尚岩峰,汪辉,汪宁. 基于高斯混合分布和区域竞争主动轮廓的医学目标分割 Medical Object Extraction by Gaussian Mixture Model and Region Competition Active Contour Model 计算机科学, 2012, 39(9): 257-261. |
[15] | 管 涛. 统计聚类模型研究综述 Overview of Statistical Clustering Models 计算机科学, 2012, 39(7): 18-24. |
|