2017 Volume E100.D Issue 6 Pages 1376-1379
Numerous methods have been developed to handle lighting variations in the preprocessing step of face recognition. However, most of them only use the high-frequency information (edges, lines, corner, etc.) for recognition, as pixels lied in these areas have higher local variance values, and thus insensitive to illumination variations. In this case, information of low-frequency may be discarded and some of the features which are helpful for recognition may be ignored. In this paper, we present a new and efficient method for illumination normalization using an energy minimization framework. The proposed method aims to remove the illumination field of the observed face images while simultaneously preserving the intrinsic facial features. The normalized face image and illumination field could be achieved by a reciprocal iteration scheme. Experiments on CMU-PIE and the Extended Yale B databases show that the proposed method can preserve a very good visual quality even on the images illuminated with deep shadow and high brightness regions, and obtain promising illumination normalization results for better face recognition performance.