2017 Volume E100.D Issue 9 Pages 2068-2080
While conventional studies on real-time systems have mostly considered the real-time constraint of real-time systems only, recent research initiatives are trying to incorporate a security constraint into real-time scheduling due to the recognition that the violation of either of two constrains can cause catastrophic losses for humans, the system, and even environment. The focus of most studies, however, is the single-criticality systems, while the security of mixed-criticality systems has received scant attention, even though security is also a critical issue for the design of mixed-criticality systems. In this paper, we address the problem of the information leakage that arises from the shared resources that are used by tasks with different security-levels of mixed-criticality systems. We define a new concept of the security constraint employing a pre-flushing mechanism to cleanse the state of shared resources whenever there is a possibility of the information leakage regarding it. Then, we propose a new non-preemptive real-time scheduling algorithm and a schedulability analysis, which incorporate the security constraint for mixed-criticality systems. Our evaluation demonstrated that a large number of real-time tasks can be scheduled without a significant performance loss under a new security constraint.