1. Kiwelekar A.W., Mahamunkar G.S., Netak L.D., andNikam V.B.Deep Learning Techniques for Geospatial Data Analysis. In Machine Learning Paradigms, Springer, Cham, pp. 63-81, 2020. 2. Mahamunkar G.S., Kiwelekar A.W., andNetak L.D.Mapping and Change Detection of Mangroves Using Remote Sensing and Google Earth Engine: A Case Study. In ICT Systems and Sustainability, Springer, Singapore, pp. 187-195, 2022. 3. Zheng, A. and Casari, A.Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists. O'Reilly Media, Inc., 2018. 4. Qasim, O.S. and Algamal, Z.Y.Feature Selection Using Particle Swarm Optimization-based Logistic Regression Model. Chemometrics and Intelligent Laboratory Systems, vol. 182, pp. 41-46, 2018. 5. Tharwat A.Linear vs. Quadratic Discriminant Analysis Classifier: A Tutorial. International Journal of Applied Pattern Recognition, vol. 3, no. 2, pp. 145-180, 2016. 6. Pisner, D.A. and Schnyer, D.M.Support Vector Machine. In Machine learning, Academic Press, pp. 101-121, 2020. 7. Yang F.J.An Implementation of Naive bayes Classifier. In2018 International conference on computational science and computational intelligence (CSCI), IEEE, pp. 301-306, 2018. 8. Camacho Olmedo, M.T., Paegelow, M., Mas, J.F., and Escobar, F. Geomatic Approaches for Modeling Land Change Scenarios. An introduction. In Geomatic Approaches for Modeling Land Change Scenarios, Springer, Cham, pp. 1-8, 2018. 9. Janiesch C., Zschech P., andHeinrich K.Machine Learning and Deep Learning. Electronic Markets, vol. 31, no. 3, pp. 685-695, 2021. 10. Goodfellow I., Bengio Y., andCourville A.Deep learning. MIT press, 2016. |