Open Access

Partial Correctness of a Fibonacci Algorithm


Cite
Download Cover

In this paper we introduce some notions to facilitate formulating and proving properties of iterative algorithms encoded in nominative data language [19] in the Mizar system [3], [1]. It is tested on verification of the partial correctness of an algorithm computing n-th Fibonacci number:

i := 0

s := 0

b := 1

c := 0

while (i <> n)

  c := s

  s := b

  b := c + s

  i := i + 1

return s

This paper continues verification of algorithms [10], [13], [12] written in terms of simple-named complex-valued nominative data [6], [8], [17], [11], [14], [15]. The validity of the algorithm is presented in terms of semantic Floyd-Hoare triples over such data [9]. Proofs of the correctness are based on an inference system for an extended Floyd-Hoare logic [2], [4] with partial pre- and post-conditions [16], [18], [7], [5].

eISSN:
1898-9934
ISSN:
1426-2630
Language:
English
Publication timeframe:
1 times per year
Journal Subjects:
Computer Sciences, Computer Sciences, other, Mathematics, General Mathematics
pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy