\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Dualities over the cross product of the cyclic groups of order 2

  • *Corresponding author: Steven T. Dougherty

    *Corresponding author: Steven T. Dougherty 
Abstract / Introduction Full Text(HTML) Related Papers Cited by
  • We determine the number of symmetric dualities on the $ s $-fold cross product of the cyclic group of order $ 2, $ which is the additive group of the finite field $ {\mathbb{F}}_{2^s}. $ We show that the ratio of symmetric dualities over all dualities goes to $ 0 $ as $ s $ goes to infinity.We also prove a surprising result that given any two binary codes $ C $ and $ D $ of the same length $ n $ with $ |C||D| = 2^n $, then viewing them as groups there is a symmetric duality $ M $ with $ C^M = D $, which also relates their weight enumerators as additive codes in a group via the MacWilliams relations. Using this theorem we show that any additive code in this setting can be viewed as an additive complementary dual code of length $ 1 $ with respect to some duality.

    Mathematics Subject Classification: Primary: 11T71 Secondary: 94B05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] C. Carlet and S. Guilley, Complementary dual codes for counter-measures to side-channel attacks, Coding Theory and Applications, CIM Ser. Math. Sci., Springer, Cham, 3 (2015), 97-105.
    [2] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., 1973, vi+97 pp.
    [3] S. T. Dougherty, Algebraic Coding Theory over Finite Commutative Rings, SpringerBriefs in Mathematics. Springer, Cham, 2017. doi: 10.1007/978-3-319-59806-2.
    [4] S. T. DoughertyJ.-L. Kim and N. Lee, Additive self-dual codes over fields of even order, Bulletin of the Korean Mathematical Society, 55 (2018), 341-357.  doi: 10.4134/BKMS.b160842.
    [5] S. T. DoughertyJ.-L. Kim and P. Solé, Open problems in coding theory, Contemp. Math., 634 (2015), 79-99.  doi: 10.1090/conm/634/12692.
    [6] S. T. Dougherty and S. Myers, Orthogonality from group characters, Involve, 14 (2021), 555-570.  doi: 10.2140/involve.2021.14.555.
    [7] B. Fine, Classification of finite rings of order $p^2$, Math. Mag., 66 (1993), 248-252.  doi: 10.1080/0025570X.1993.11996133.
    [8] M. R. Julian, No MacWilliams duality for codes over nonabelian groups, J. Algebra Comb. Discrete Struct. Appl., 5 (2018), 45-49.  doi: 10.13069/jacodesmath.369864.
    [9] D. MacHale, Are there more finite rings than finite groups?, Amer. Math. Monthly, 127 (2020), 936-938.  doi: 10.1080/00029890.2020.1820790.
    [10] F. J. MacWilliams, Combinatorial Problems of Elementary Group Theory, Ph.D. thesis, Harvard University, 1961.
    [11] F. J. MacWilliams, A theorem on the distribution of weights in a systematic code, Bell System Tech. J., 42 (1963), 79-94.  doi: 10.1002/j.1538-7305.1963.tb04003.x.
    [12] K. E. Morrison, Integer sequences and matrices over finite fields, Journal of Integer Sequences, 9 (2006), Article 06.2.1, 28 pp.
    [13] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
    [14] J. Wood, Duality for modules over finite rings and applications to coding theory, Amer. J. Math., 121 (1999), 555-575.  doi: 10.1353/ajm.1999.0024.
  • 加载中
SHARE

Article Metrics

HTML views(2708) PDF downloads(701) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    pFad - Phonifier reborn

    Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

    Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


    Alternative Proxies:

    Alternative Proxy

    pFad Proxy

    pFad v3 Proxy

    pFad v4 Proxy