Computer Science > Logic in Computer Science
[Submitted on 3 Jan 2017]
Title:An Extension of Proof Graphs for Disjunctive Parameterised Boolean Equation Systems
View PDFAbstract: A parameterised Boolean equation system (PBES) is a set of equations that defines sets as the least and/or greatest fixed-points that satisfy the equations. This system is regarded as a declarative program defining functions that take a datum and returns a Boolean value. The membership problem of PBESs is a problem to decide whether a given element is in the defined set or not, which corresponds to an execution of the program. This paper introduces reduced proof graphs, and studies a technique to solve the membership problem of PBESs, which is undecidable in general, by transforming it into a reduced proof graph.
A vertex X(v) in a proof graph represents that the data v is in the set X, if the graph satisfies conditions induced from a given PBES. Proof graphs are, however, infinite in general. Thus we introduce vertices each of which stands for a set of vertices of the original ones, which possibly results in a finite graph. For a subclass of disjunctive PBESs, we clarify some conditions which reduced proof graphs should satisfy. We also show some examples having no finite proof graph except for reduced one. We further propose a reduced dependency space, which contains reduced proof graphs as sub-graphs if a proof graph exists. We provide a procedure to construct finite reduced dependency spaces, and show the soundness and completeness of the procedure.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Tue, 3 Jan 2017 10:38:38 UTC (22 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.