Computer Science > Logic in Computer Science
[Submitted on 19 Feb 2018]
Title:Reduced Dependency Spaces for Existential Parameterised Boolean Equation Systems
View PDFAbstract:A parameterised Boolean equation system (PBES) is a set of equations that defines sets satisfying the equations as the least and/or greatest fixed-points. Thus this system is regarded as a declarative program defining predicates, where a program execution returns whether a given ground atomic formula holds or not. The program execution corresponds to the membership problem of PBESs, which is however undecidable in general.
This paper proposes a subclass of PBESs which expresses universal-quantifiers free formulas, and studies a technique to solve the problem on it. We use the fact that the membership problem is reduced to the problem whether a proof graph exists. To check the latter problem, we introduce a so-called dependency space which is a graph containing all of the minimal proof graphs. Dependency spaces are, however, infinite in general. Thus, we propose some conditions for equivalence relations to preserve the result of the membership problem, then we identify two vertices as the same under the relation. In this sense, dependency spaces possibly result in a finite graph. We show some examples having infinite dependency spaces which are reducible to finite graphs by equivalence relations. We provide a procedure to construct finite dependency spaces and show the soundness of the procedure. We also implement the procedure using an SMT solver and experiment on some examples including a downsized McCarthy 91 function.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Mon, 19 Feb 2018 02:06:59 UTC (57 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.