LIPIcs.APPROX-RANDOM.2024.15.pdf
- Filesize: 0.82 MB
- 15 pages
In this work we study the classic problem of online weighted paging with a probabilistic prediction model, in which we are given additional information about the input in the form of distributions over page requests, known as distributional online paging (DOP). This work continues a recent line of research on learning-augmented algorithms that incorporates machine-learning predictions in online algorithms, so as to go beyond traditional worst-case competitive analysis, thus circumventing known lower bounds for online paging. We first provide an efficient online algorithm that achieves a constant factor competitive ratio with respect to the best online algorithm (policy) for weighted DOP that follows from earlier work on the stochastic k-server problem. Our main contribution concerns the question of whether distributional information over a limited horizon suffices for obtaining a constant competitive factor. To this end, we define in a natural way a new predictive model with limited horizon, which we call Per-Request Stochastic Prediction (PRSP). We show that we can obtain a constant factor competitive algorithm with respect to the optimal online algorithm for this model.
Feedback for Dagstuhl Publishing