Computer Science > Computer Vision and Pattern Recognition
[Submitted on 26 Dec 2019 (v1), last revised 25 Aug 2020 (this version, v3)]
Title:Domain Adaptation Regularization for Spectral Pruning
View PDFAbstract:Deep Neural Networks (DNNs) have recently been achieving state-of-the-art performance on a variety of computer vision related tasks. However, their computational cost limits their ability to be implemented in embedded systems with restricted resources or strict latency constraints. Model compression has therefore been an active field of research to overcome this issue. Additionally, DNNs typically require massive amounts of labeled data to be trained. This represents a second limitation to their deployment. Domain Adaptation (DA) addresses this issue by allowing knowledge learned on one labeled source distribution to be transferred to a target distribution, possibly unlabeled. In this paper, we investigate on possible improvements of compression methods in DA setting. We focus on a compression method that was previously developed in the context of a single data distribution and show that, with a careful choice of data to use during compression and additional regularization terms directly related to DA objectives, it is possible to improve compression results. We also show that our method outperforms an existing compression method studied in the DA setting by a large margin for high compression rates. Although our work is based on one specific compression method, we also outline some general guidelines for improving compression in DA setting.
Submission history
From: Yosuke Shinya [view email][v1] Thu, 26 Dec 2019 12:38:13 UTC (264 KB)
[v2] Tue, 31 Mar 2020 12:27:50 UTC (445 KB)
[v3] Tue, 25 Aug 2020 09:08:08 UTC (423 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.